Logo do repositório
 
Publicação

ARTIFICIAL INTELLIGENCE–BASED SUPER NODES FOR REAL-TIME THREAT DETECTION IN DISTRIBUTED ENVIRONMENTS BIBLIOMETRIC ANALYSIS

datacite.subject.fosEngenharia e Tecnologia
dc.contributor.authorLopes, José
dc.contributor.authorDias Lousã, Mário Jorge
dc.contributor.authorDias Lousã, Mário Jorge
dc.contributor.authorPereira de Morais, José Carlos
dc.contributor.authorPereira de Morais, José Carlos
dc.contributor.editorMorais, José Carlos
dc.contributor.editorLousã, Mário
dc.date.accessioned2026-01-29T18:14:55Z
dc.date.available2026-01-29T18:14:55Z
dc.date.issued2026-01-01
dc.description.abstractThe widespread adoption of distributed systems, driven by the growth of the Internet of Things (IoT), edge computing, and cloud infrastructure, has substantially expanded the attack surface of modern digital ecosystems. These environments, characterized by high heterogeneity, large data volumes, and stringent latency requirements, make real-time threat detection a complex task. Traditional, pre-dominantly centralized security mechanisms reveal clear limitations in scalability and response time in the face of increasingly dynamic attack patterns. In this context, Artificial Intelligence (AI) and Machine Learning have emerged as essential enablers for more effective intrusion detection. At the same time, the concept of “super nodes” is gaining prominence: strategically positioned network elements with enhanced computational capabilities that act as intelligent intermediaries between edge devices and the central cloud. This study presents a bibliometric analysis of the use of AI-based super nodes for real-time threat detection. The analysis focuses on a sample of 300 publications indexed in the Lens.org database (2015–2025), selected according to the PRISMA 2020 guidelines. Through descriptive indicators and network analysis (such as keyword co-occurrence), research trends, the-matic structures, and emerging directions in this field are identified.eng
dc.identifier.citationLopes, J., Lousã, M., & Morais, J. (2026).
dc.identifier.doihttps://doi.org/10.58086/yv38-0307
dc.identifier.issn0874-8799
dc.identifier.urihttp://hdl.handle.net/10400.26/61316
dc.language.isoeng
dc.peerreviewedyes
dc.publisherISPGAYA
dc.relation.ispartofseriesPolitécnica
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectArtificial Intelligence
dc.subjectMachine Learning
dc.subjectIoT Security
dc.subjectEdge Intelligence
dc.subjectBib-liometric Analysis.
dc.titleARTIFICIAL INTELLIGENCE–BASED SUPER NODES FOR REAL-TIME THREAT DETECTION IN DISTRIBUTED ENVIRONMENTS BIBLIOMETRIC ANALYSISeng
dc.typetext
dspace.entity.typePublication
oaire.citation.endPage116
oaire.citation.issue1
oaire.citation.startPage100
oaire.citation.titlePolitécnica
oaire.citation.volume32
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameDias Lousã
person.familyNamePereira de Morais
person.givenNameMário Jorge
person.givenNameJosé Carlos
person.identifier.ciencia-id471D-D183-2BDE
person.identifier.ciencia-idD412-2DF0-6747
person.identifier.orcid0000-0001-7776-5528
person.identifier.orcid0000-0002-7924-5902
relation.isAuthorOfPublication890c1788-42db-480a-aa2d-e1aa19b98ebb
relation.isAuthorOfPublication15f8ed06-6876-4d00-ac07-2822e0c5454e
relation.isAuthorOfPublication.latestForDiscovery890c1788-42db-480a-aa2d-e1aa19b98ebb

Ficheiros

Principais
A mostrar 1 - 1 de 1
A carregar...
Miniatura
Nome:
Politécnica 25 no layout (2)-101-116.pdf
Tamanho:
724.67 KB
Formato:
Adobe Portable Document Format
Licença
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
license.txt
Tamanho:
1.85 KB
Formato:
Item-specific license agreed upon to submission
Descrição: