Logo do repositório
 
Publicação

SECURITY AND PRIVACY IN EXPLAINABLE AI: A BIBLIOMETRIC ANALYSIS OF EMERGING LEAKAGE RISKS

datacite.subject.fosEngenharia e Tecnologia
dc.contributor.authorMatos, Mafalda
dc.contributor.authorDias Lousã, Mário Jorge
dc.contributor.authorDias Lousã, Mário Jorge
dc.contributor.authorPereira de Morais, José Carlos
dc.contributor.authorPereira de Morais, José Carlos
dc.contributor.editorMorais, José Carlos
dc.contributor.editorLousã, Mário
dc.date.accessioned2026-01-29T18:18:24Z
dc.date.available2026-01-29T18:18:24Z
dc.date.issued2026-01-01
dc.description.abstractExplainable Artificial Intelligence (XAI) has gained increasing attention as a means of improving the transparency and trustworthiness of machine learning algorithms, particularly in domains where security and privacy concerns are relevant. This study presents a bibliometric analysis of research at the intersection of explainable artificial intelligence, security, and privacy. The aim was to charac-terize publication trends, thematic structures, and keyword relationships within the field. Scholarly records were retrieved from the Lens database using a structured search strategy based on the PRISMA protocol and analyzed using bibliometric tools, including Bibliometrix and VOSviewer. The total number of studies analyzed was 8,099, and the analyzed time frame was 2010–2025. The analysis examined general publication information, annual scientific production, leading publication venues, and keyword co-occurrence networks. Results indicate a rapid growth in XAI-related publi-cations in recent years and reveal several major thematic clusters, including deep learning–driven medical imaging applications, foundational machine learning and data science concepts, explaina-bility methods in security and distributed learning contexts, and governance-oriented themes related to ethics, privacy, and trust. Overall, the findings highlight the application-driven and interdiscipli-nary nature of explainable AI research, while showing that security and privacy topics, although present, remain relatively peripheral within the broader XAI literature.por
dc.identifier.citationMatos, M., Lousã, M., & Morais, J., (2026). SECURITY AND PRIVACY IN EXPLAINABLE AI: A BIBLIOMETRIC ANALYSIS OF EMERGING LEAKAGE RISKS. Vol. 32 (1).
dc.identifier.doihttps://doi.org/10.58086/r7pn-1f89
dc.identifier.issn0874-8799
dc.identifier.urihttp://hdl.handle.net/10400.26/61319
dc.language.isoeng
dc.peerreviewedyes
dc.publisherISPGAYA
dc.relation.ispartofseriesPolitécnica
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectExplainable Artificial Intelligence
dc.subjectBibliometric Analysis
dc.subjectCybersecurity
dc.subjectInfor-mation Leakage
dc.subjectMachine Learning
dc.subjectData Science
dc.subjectPrivacy-Preserving ML.
dc.titleSECURITY AND PRIVACY IN EXPLAINABLE AI: A BIBLIOMETRIC ANALYSIS OF EMERGING LEAKAGE RISKSeng
dc.typetext
dspace.entity.typePublication
oaire.citation.endPage82
oaire.citation.issue1
oaire.citation.startPage65
oaire.citation.titlePolitécnica
oaire.citation.volume32
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameDias Lousã
person.familyNamePereira de Morais
person.givenNameMário Jorge
person.givenNameJosé Carlos
person.identifier.ciencia-id471D-D183-2BDE
person.identifier.ciencia-idD412-2DF0-6747
person.identifier.orcid0000-0001-7776-5528
person.identifier.orcid0000-0002-7924-5902
relation.isAuthorOfPublication890c1788-42db-480a-aa2d-e1aa19b98ebb
relation.isAuthorOfPublication15f8ed06-6876-4d00-ac07-2822e0c5454e
relation.isAuthorOfPublication.latestForDiscovery890c1788-42db-480a-aa2d-e1aa19b98ebb

Ficheiros

Principais
A mostrar 1 - 1 de 1
A carregar...
Miniatura
Nome:
Politécnica 25 no layout (2)-49-64.pdf
Tamanho:
640.27 KB
Formato:
Adobe Portable Document Format
Licença
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
license.txt
Tamanho:
1.85 KB
Formato:
Item-specific license agreed upon to submission
Descrição: