Browsing by Author "Lozza, V."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Current Status and Future Prospects of the SNO+ ExperimentPublication . SNO+ collaboration (156 authors); Andringa, S.; Barros, N.; Carvalho, J.; Chauhan, D.; Lozza, V.; Maio, A.; Maneira, J.; Prior, G.SNO+ is a large liquid scintillator-based experiment located 2km underground at SNOLAB, Sudbury, Canada. It reuses the Sudbury Neutrino Observatory detector, consisting of a 12m diameter acrylic vessel which will be filled with about 780 tonnes of ultra-pure liquid scintillator. Designed as a multipurpose neutrino experiment, the primary goal of SNO+ is a search for the neutrinoless double-beta decay (0$\nu\beta\beta$) of 130Te. In Phase I, the detector will be loaded with 0.3% natural tellurium, corresponding to nearly 800 kg of 130Te, with an expected effective Majorana neutrino mass sensitivity in the region of 55-133 meV, just above the inverted mass hierarchy. Recently, the possibility of deploying up to ten times more natural tellurium has been investigated, which would enable SNO+ to achieve sensitivity deep into the parameter space for the inverted neutrino mass hierarchy in the future. Additionally, SNO+ aims to measure reactor antineutrino oscillations, low-energy solar neutrinos, and geoneutrinos, to be sensitive to supernova neutrinos, and to search for exotic physics. A first phase with the detector filled with water will begin soon, with the scintillator phase expected to start after a few months of water data taking. The 0$\nu\beta\beta$ Phase I is foreseen for 2017.
- Temperature quenching in LAB based liquid scintillatorPublication . Sörensen, A.; Hans, S.; Junghans, A.R.; Krosigk, B.v.; Kögler, T.; Lozza, V.; Wagner, A.; Yeh, M.; Zuber, K.The effect of temperature changes on the light output of LAB based liquid scintillator is investigated in a range from $-5$ to $30\,^{\circ }$ C with $\alpha $ -particles and electrons in a small scale setup. Two PMTs observe the scintillator liquid inside a cylindrically shaped aluminum cuvette that is heated or cooled and the temperature dependent PMT sensitivity is monitored and corrected. The $\alpha $ -emitting isotopes in dissolved radon gas and in natural Samarium (bound to a LAB solution) excite the liquid scintillator mixtures and changes in light output with temperature variation are observed by fitting light output spectra. Furthermore, also changes in light output by compton electrons, which are generated from external calibration $\gamma $ -ray sources, is analysed with varying temperature. Assuming a linear behaviour, a combined negative temperature coefficient of ${(-0.29 \pm 0.01)}{\,\%/^{\circ }}\hbox {C}$ is found. Considering hints for a particle type dependency, electrons show ${(-0.17 \pm 0.02)}{\,\%/^{\circ }}\hbox {C}$ , whereas the temperature dependency seems stronger for $\alpha $ -particles, with ${(-0.35 \pm 0.03)}{\,\%/^{\circ }}\hbox {C}$ . Due to a high sampling rate, a pulse shape analysis can be performed and shows an enhanced slow decay component at lower temperatures, pointing to reduced non-radiative triplet state de-excitations.
- Theia: an advanced optical neutrino detectorPublication . Askins, M.; Bagdasarian, Z.; Barros, N.; Beier, E. W.; Blucher, E.; Bonventre, R.; Bourret, E.; Callaghan, E. J.; Caravaca, J.; Diwan, M.; Dye, S. T.; Eisch, J.; Elagin, A.; Enqvist, T.; Fischer, V.; Frankiewicz, K.; Grant, C.; Guffanti, D.; Hagner, C.; Hallin, A.; Jackson, C. M.; Jiang, R.; Kaptanoglu, T.; Klein, J. R.; Kolomensky, Yu. G.; Kraus, C.; Krennrich, F.; Kutter, T.; Lachenmaier, T.; Land, B.; Lande, K.; Learned, J. G.; Lozza, V.; Ludhova, L.; Malek, M.; Manecki, S.; Maneira, J.; Maricic, J.; Martyn, J.; Mastbaum, A.; Mauger, C.; Moretti, F.; Napolitano, J.; Naranjo, B.; Nieslony, M.; Oberauer, L.; Orebi Gann, G. D.; Ouellet, J.; Pershing, T.; Petcov, S. T.; Pickard, L.; Rosero, R.; Sanchez, M. C.; Sawatzki, J.; Seo, S. H.; Smiley, M.; Smy, M.; Stahl, A.; Steiger, H.; Stock, M. R.; Sunej, H.; Svoboda, R.; Tiras, E.; Trzaska, W. H.; Tzanov, M.; Vagins, M.; Vilela, C.; Wang, Z.; Wang, J.; Wetstein, M.; Wilking, M. J.; Winslow, L.; Wittich, P.; Wonsak, B.; Worcester, E.; Wurm, M.; Yang, G.; Yeh, M.; Zimmerman, E. D.; Zsoldos, S.; Zuber, K.