Browsing by Author "Böhm, M."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Denoising using local projective subspace methodsPublication . Gruber, P.; Stadlthanner, K.; Böhm, M.; Theis, F.J.; Lang, E.W.; Tomé, A.M.; Teixeira, Ana; Puntonet, C.G.; Gorriz Saéz, J.M.In this paper we present denoising algorithms for enhancing noisy signals based on Local ICA (LICA), Delayed AMUSE (dAMUSE) and Kernel PCA (KPCA). The algorithm LICA relies on applying ICA locally to clusters of signals embedded in a high-dimensional feature space of delayed coordinates. The components resembling the signals can be detected by various criteria like estimators of kurtosis or the variance of autocorrelations depending on the statistical nature of the signal. The algorithm proposed can be applied favorably to the problem of denoising multi-dimensional data. Another projective subspace denoising method using delayed coordinates has been proposed recently with the algorithm dAMUSE. It combines the solution of blind source separation problems with denoising efforts in an elegant way and proofs to be very efficient and fast. Finally, KPCA represents a non-linear projective subspace method that is well suited for denoising also. Besides illustrative applications to toy examples and images, we provide an application of all algorithms considered to the analysis of protein NMR spectra.
- How to apply nonlinear subspace techniques to univariate biomedical tim e seriesPublication . Teixeira, Ana; Tomé, A. M.; Böhm, M.; Puntonet, Carlos G.; Lang, Elmar W.In this paper, we propose an embedding technique for univariate single-channel biomedical signals to apply projective subspace techniques. Biomedical signals are often recorded as 1-D time series; hence, they need to be transformed to multidimensional signal vectors for subspace techniques to be applicable. The transformation can be achieved by embedding an observed signal in its delayed coordinates. We propose the application of two nonlinear subspace techniques to embedded multidimensional signals and discuss their relation. The techniques consist of modified versions of singular-spectrum analysis (SSA) and kernel principal component analysis (KPCA). For illustrative purposes, both nonlinear subspace projection techniques are applied to an electroencephalogram (EEG) signal recorded in the frontal channel to extract its dominant electrooculogram (EOG) interference. Furthermore, to evaluate the performance of the algorithms, an experimental study with artificially mixed signals is presented and discussed.