1.º Ano

Números e Operações

Números naturais

Operações com números naturais

Regularidades

Joana Brocardo
Catarina Delgado
Fátima Mendes
1.º Ano

Números e Operações

Números naturais
Noção de número natural
Relações numéricas
Sistema de numeração

Operações com números naturais
Adição e subtracção

Regularidades
Sequências

Joana Brocardo
Catarina Delgado
Fátima Mendes

2010
Arranjo gráfico:

Mário Baía

Nesta publicação foram utilizadas e adaptadas imagens de ARTHUR'S BOYS & GIRLS CLIPART (http://www.arthursclipart.org/children/togethercol.htm)
Índice

Introdução

<table>
<thead>
<tr>
<th>Sequência 1 - Números naturais, Adição e subtração e Regularidades</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cartões para pintar</td>
<td>7</td>
</tr>
<tr>
<td>Tarefa 1 – Cartões para pintar</td>
<td>9</td>
</tr>
<tr>
<td>Contar usando as mãos</td>
<td>13</td>
</tr>
<tr>
<td>Tarefa 2 – Contar usando as mãos</td>
<td>16</td>
</tr>
<tr>
<td>Contar cubos</td>
<td>23</td>
</tr>
<tr>
<td>Tarefa 3 – Contar cubos</td>
<td>25</td>
</tr>
<tr>
<td>Usando colares de contas</td>
<td>31</td>
</tr>
<tr>
<td>Tarefa 4 – Usando colares de contas</td>
<td>33</td>
</tr>
<tr>
<td>Onde está?</td>
<td>37</td>
</tr>
<tr>
<td>Tarefa 5 – Onde está?</td>
<td>38</td>
</tr>
<tr>
<td>Par ou ímpar</td>
<td>41</td>
</tr>
<tr>
<td>Tarefa 6 – Par ou ímpar</td>
<td>43</td>
</tr>
<tr>
<td>Pacotes de leite</td>
<td>51</td>
</tr>
<tr>
<td>Tarefa 1 – Pacotes de leite</td>
<td>52</td>
</tr>
<tr>
<td>Do colar de contas para a recta</td>
<td>57</td>
</tr>
<tr>
<td>Tarefa 2 – Do colar de contas para a recta</td>
<td>59</td>
</tr>
<tr>
<td>Vamos registar as presenças!</td>
<td>63</td>
</tr>
<tr>
<td>Tarefa 3 – Vamos registar as presenças!</td>
<td>65</td>
</tr>
<tr>
<td>Quem faz anos este mês?</td>
<td>71</td>
</tr>
<tr>
<td>Tarefa 4 – Quem faz anos este mês?</td>
<td>73</td>
</tr>
<tr>
<td>Calcular em cadeia</td>
<td>81</td>
</tr>
<tr>
<td>Tarefa 5 – Calcular em cadeia</td>
<td>82</td>
</tr>
<tr>
<td>Tarefa 6 – Calcular em cadeia</td>
<td>89</td>
</tr>
</tbody>
</table>

Sequência 2 - Números naturais, Adição e subtração e Regularidades

<table>
<thead>
<tr>
<th>Sequência 3 - Adição e subtração e Regularidades</th>
<th>97</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcular com dinheiro</td>
<td>99</td>
</tr>
<tr>
<td>Tarefa 1 – Calcular com dinheiro</td>
<td>101</td>
</tr>
<tr>
<td>Calcular como ...</td>
<td>107</td>
</tr>
<tr>
<td>Tarefa 2 – Calcular como...</td>
<td>109</td>
</tr>
<tr>
<td>Relacionar para calcular</td>
<td>113</td>
</tr>
<tr>
<td>Tarefa 3 – Relacionar para calcular</td>
<td>114</td>
</tr>
<tr>
<td>Numerando ruas e estantes</td>
<td>119</td>
</tr>
<tr>
<td>Tarefa 4 – Numerando ruas e estantes</td>
<td>122</td>
</tr>
</tbody>
</table>
Introdução

No 1.º ano o trabalho em torno dos números e operações parte dos conhecimentos desenvolvidos, informalmente, na experiência do dia-a-dia e na educação pré-escolar e vai-se estruturando numa perspectiva de desenvolvimento do sentido do número.

Os tópicos Números naturais, Adição e subtração e Regularidades são fundamentais, devendo ser trabalhados de modo articulado entre si e com os outros tópicos e temas. Só deste modo podem ser atingidos os objectivos de aprendizagem previstos para este tema, segundo os quais os alunos devem:

- Compreender e ser capazes de usar as propriedades dos números naturais e racionais não negativos;
- Compreender o sistema de numeração decimal;
- Compreender as operações e ser capazes de operar com números naturais e racionais não negativos na representação decimal;
- Ser capazes de apreciar ordens de grandeza de números e compreender o efeito das operações;
- Ser capazes de estimar e de avaliar a razoabilidade dos resultados;
- Desenvolver destrezas de cálculo numérico mental e escrito;
- Ser capazes de resolver problemas, raciocinar e comunicar em contextos numéricos (p. 13)

As sequências de tarefas aqui apresentadas têm presente a importância da interligação entre tópicos e temas. As tarefas referentes à Adição e subtração propõem a exploração de tópicos incluídos no tema Organização e tratamento de dados e as Regularidades são trabalhadas de modo integrado no tópico Números naturais e Adição e subtração. Os tópicos incluídos nas capacidades transversais estão constantemente presentes nas sequências de tarefas representadas. Tanto via o enunciado apresentado como via as sugestões de exploração que se apresentam para o(a) professor(a), concretizam-se numerosas propostas de exploração relacionadas com os tópicos Resolução de problemas, Raciocínio matemático e Comunicação matemática. Deste modo, perspectiva-se uma integração do desenvolvimento das capacidades transversais com o desenvolvimento do sentido do número.

Números naturais

No desenvolvimento deste tópico é fundamental ter em conta os conhecimentos sobre os números e as suas representações que os alunos já possuem fruto das suas experiências do quotidiano e da educação pré-escolar. Neste sentido são propostas situações que envolvem a classificação, a contagem, a ordenação de números e a noção de cardinalidade. Mais especificamente, pretende-se que os alunos no início do 1.º ano desenvolvam as seguintes ideias e procedimentos:

- Classificar e ordenar de acordo com determinado critério;
- Compor e decompor números;
- Identificar e dar exemplos de diferentes representações para o mesmo número;
- Realizar contagens progressivas e regressivas, representando os números envolvidos;
- Compreender várias utilizações do número e identificar números em contextos do quotidiano;
- Identificar e dar exemplos de números pares e ímpares (Ponte et al., 2007).

As propostas de tarefas, relativas a este tópico, sugerem o uso de materiais físicos que auxiliam os alunos a efectuarem contagens e a representarem as respectivas quantidades. Saliente-se o uso do colar de contas que constitui, nesta fase, um material importante na estruturação dos números até 20. Para além de alguns contextos associados às tarefas permitirem o uso de modelos, estes foram pensados de forma a dar sentido aos números envolvidos.

Adição e subtracção

É fundamental, neste tópico, a articulação com o tópico Números naturais pois a contagem suporta a compreensão das relações numéricas e das operações e apoia o desenvolvimento de estratégias de cálculo mental. No trabalho com as operações é importante ter em atenção as seguintes ideias matemáticas e/ou didácticas:

- Os vários sentidos da adição e da subtracção devem ser objecto de trabalho intencional;
O cálculo com números menores ou iguais a 10 e, posteriormente, o cálculo com números até 20, devem tornar-se progressivamente automáticos;

O cálculo horizontal baseia-se na utilização das relações lineares entre os números e está associado ao uso de estratégias de cálculo mental que assentam nos “saltos” para a frente e para trás na recta não graduada;

O cálculo por decomposição dos números em dezenas e unidades baseia-se na sua estrutura decimal e utiliza as propriedades associativa e comutativa da adição;

O cálculo flexível tem subjacente o uso de propriedades e relações que, no 1.º ano, incidem, sobretudo, nas propriedades comutativa e associativa da adição, nas relações de dobro e de dobro/metade, e ainda na relação inversa entre as operações adição e subtração.

O uso de modelos estruturados como, por exemplo, o colar de contas e a recta não graduada, facilita a estruturação do sistema decimal e apoia o cálculo.

Os contextos apresentados nas tarefas correspondem a situações familiares às crianças e, alguns deles, referem-se a rotinas habituais em turmas do 1.º ciclo, tais como o registo de presenças e a contagem de pacotes de leite bebidos diariamente.

Regularidades

A exploração de situações relacionadas com diversos tipos de regularidades numéricas é importante pois alicerça um olhar sobre propriedades e relações que são fundamentais para compreender os números e operações e para iniciar o desenvolvimento do pensamento algébrico. Note-se que o tema Regularidades não se esgota no trabalho em torno dos números e que, pelo contrário, tal como é referido no Programa de Matemática do Ensino Básico (PMEB)\(^2\), ele deve ser trabalhado no contexto da análise de regularidades de sequências de acontecimentos, formas ou desenhos. No entanto, tendo em conta o tema desta brochura, apenas são incluídas propostas de exploração de regularidades numéricas.

Nas tarefas propostas pretende-se explorar regularidades a partir de situações problemáticas a que os alunos consigam dar sentido. Tendo em conta que se trata de alunos de 1.º ano opta-se por explorar situações que têm um

--

contexto que podem manusear concretamente, tanto por meio do uso de cartões, como pelo uso de desenhos que ilustram contextos que lhes são familiares – ruas e estantes. Embora ainda muito centradas na exploração de regularidades simples como as associadas aos números pares e ímpares, as tarefas propostas incluem tanto a identificação de regularidades em que são apresentados todos os termos iniciais de uma sequência, como em que faltam vários dos termos iniciais da sequência. Neste último caso, a identificação da lei de formação que permite continuar a construção da sequência numérica é mais difícil, pelo que só devem ser introduzida em contextos já explorados e/ou familiares aos alunos.
Sequência 1

Números naturais, Adição e subtração e Regularidades
<table>
<thead>
<tr>
<th>Tópicos</th>
<th>Objectivos específicos</th>
<th>Notas</th>
<th>Tarefas</th>
<th>Organização temporal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>– Classificar e ordenar de acordo com um dado critério.</td>
<td>Propor situações que envolvam classificação, contagem, ordenação e cardinalidade. No trabalho inicial com números criar situações para introduzir o número zero.</td>
<td>Cartões para pintar</td>
<td>Tarefa para ser explorada durante cerca de 90 minutos. A tarefa deve ser retomada com cartões com dez círculos.</td>
</tr>
<tr>
<td></td>
<td>– Compor e decompor números.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Identificar e dar exemplos de diferentes representações para o mesmo número.</td>
<td>Propor situações que envolvam contagem, ordenação e cardinalidade. Salientar diferentes representações dos números.</td>
<td>Contar usando as mãos</td>
<td>Tarefa para ser explorada em vários dias, cerca de 10/15 minutos em cada dia. As partes 2 e 3 podem ser repetidas em outros dias.</td>
</tr>
<tr>
<td></td>
<td>– Resolver problemas envolvendo relações numéricas.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Compreender a adição no sentido acrescentar e combinar.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Compreender a subtração no sentido retirar.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Usar os sinais + e – na representação horizontal do cálculo.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Realizar contagens progressivas e regressivas, representando os números envolvidos.</td>
<td>Propor situações que envolvam contagem, ordenação e cardinalidade. Salientar diferentes representações dos números. No trabalho inicial com números criar situações para introduzir o número zero.</td>
<td>Contar cubes</td>
<td>Tarefa para ser explorada durante cerca de 60 minutos.</td>
</tr>
<tr>
<td></td>
<td>– Identificar e dar exemplos de diferentes representações para o mesmo número.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Resolver problemas envolvendo relações numéricas.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Realizar contagens progressivas e regressivas, representando os números envolvidos.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Comparar e ordenar números.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Resolver problemas envolvendo relações numéricas.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adição e subtração</td>
<td>– Realizar contagens progressivas e regressivas, representando os números envolvidos.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Compreender vários utilização do número e identificar números em contextos do quotidiano.</td>
<td>Utilizar números em situações envolvendo quantidades, ordenação, identificação e localização.</td>
<td>Onde está?</td>
<td>Tarefa para ser explorada durante cerca de 60 minutos.</td>
</tr>
<tr>
<td></td>
<td>– Investigar regularidades numéricas.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Identificar e dar exemplos de números pares e ímpares.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Realizar contagens progressivas e regressivas, representando os números envolvidos.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Comparar e ordenar números.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Resolver problemas envolvendo relações numéricas.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Realizar contagens progressivas e regressivas, representando os números envolvidos.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Compreender vários utilização do número e identificar números em contextos do quotidiano.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Investigar regularidades numéricas.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Identificar e dar exemplos de números pares e ímpares.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Realizar contagens progressivas e regressivas, representando os números envolvidos.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Compreender vários utilização do número e identificar números em contextos do quotidiano.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Investigar regularidades numéricas.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Identificar e dar exemplos de números pares e ímpares.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Realizar contagens progressivas e regressivas, representando os números envolvidos.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Compreender vários utilização do número e identificar números em contextos do quotidiano.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Investigar regularidades numéricas.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Identificar e dar exemplos de números pares e ímpares.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Realizar contagens progressivas e regressivas, representando os números envolvidos.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Compreender vários utilização do número e identificar números em contextos do quotidiano.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Investigar regularidades numéricas.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Identificar e dar exemplos de números pares e ímpares.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Realizar contagens progressivas e regressivas, representando os números envolvidos.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Compreender vários utilização do número e identificar números em contextos do quotidiano.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Investigar regularidades numéricas.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Identificar e dar exemplos de números pares e ímpares.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Realizar contagens progressivas e regressivas, representando os números envolvidos.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Compreender vários utilização do número e identificar números em contextos do quotidiano.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Investigar regularidades numéricas.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Identificar e dar exemplos de números pares e ímpares.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Realizar contagens progressivas e regressivas, representando os números envolvidos.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Compreender vários utilização do número e identificar números em contextos do quotidiano.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Investigar regularidades numéricas.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Identificar e dar exemplos de números pares e ímpares.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CARTÕES PARA PINTAR
CARTÕES PARA PINTAR
Tarefa 1 - Cartões para pintar

Materiais

- Fotocópias da folha com os cartões com seis círculos para pintar e recortar

Ideias disponíveis e em desenvolvimento

- Contar até 10
- Usar um dado critério para colorir os cartões

Ideias e procedimentos a desenvolver

- Classificar e ordenar de acordo com um dado critério
- Compor e decompor números

Sugestões para exploração

A exploração desta tarefa poderá ser realizada durante uma parte do dia, ocupando cerca de 90 minutos.

Inicialmente esta tarefa deve ser feita usando cartões com seis círculos e, posteriormente, podem ser usados cartões com 10 círculos, desenvolvendo aspectos relacionados com a cardinalidade e a ordenação dos números até 10, para além da composição e decomposição desses mesmos números. As sugestões de exploração referem-se a cartões com seis círculos.

Os alunos começam por colorir os círculos que estão em cada cartão com 4 cores diferentes (por exemplo, encarnado, azul, amarelo e preto) e por separar os cartões cortando pelas linhas a tracejado. O(A) professor(a) pode optar por dar maior ou menor liberdade às crianças relativamente às regras que usam para colorir os círculos. Na concretização de exploração da tarefa que apresentamos em seguida optou-se por pensar que cada criança tem um cartão e que dispõe de quatro cores diferentes – e (encarnado), a (azul), v (verde) e p (preto) – que pode usar livremente.
Depois de cada criança ter pintado o seu cartão, o(a) professor(a) pode pedir para o levarem consigo e para se reunirem todos numa zona da sala. Há professores que organizam o espaço da sala de aula de modo a que haja uma zona sem mesas, onde os alunos se possam sentar para conversar próximos dele(a). Este tipo de espaço, a que alguns chamam “tapete” ou “zona das almofadas” por estar coberto com um tapete ou por ter almofadas para os alunos se sentarem, é muito adequado para gerir momentos de grande interacção entre estes e o(a) professor(a), como o que se sugere na exploração desta tarefa.

O(A) professor(a) pode começar por pedir a dois ou três alunos que explicitem o modo como pintaram o cartão. Não é muito importante exigir uma grande precisão nesta descrição pois o que se pretende é que os alunos, no contexto da explicação do que fizeram, explicitem o modo como usaram o critério cor: “nos cantos pintei de encarnado”, “2 azuis, um aqui e outro aqui”, “tem azuis e verdes”, etc.

Em seguida o(a) professor(a) sugere aos alunos que olhem bem para o seu cartão e que o levantem sempre que ele corresponda ao critério que ele enuncia. Por exemplo, pode pedir que levantem o cartão no caso de ele ter:

- As 4 cores;
- 3 círculos azuis;
- Só ter 3 cores;
- Ter 2 círculos verdes;
- Ter 2 círculos azuis e 4 encarnados.

Depois desta fase em que os alunos analisam o seu cartão percebendo se ele obedece, ou não, a determinado critério, pode começar-se a desafiar os alunos para a operação inversa ou seja, estabelecer um critério que corresponda a um cartão.

Ao pedir a uma das crianças que olhe para o cartão de Daniel e o descreva, pretende-se que ela perceba que não basta nomear as cores com que se pintaram os círculos. É necessário dizer quantos círculos há de cada cor e qual a sua posição. Note-se que há cartões cuja descrição rigorosa se pode tornar demasiado difícil. No

3 Deste modo o aluno está a desenvolver a capacidade de localização que é mais especificada no tema Geometria e Medida.
entanto, o objectivo é analisar possíveis descrições de cartões e não dificultar a tarefa. Por isso, é importante pedir para descrever cartões cuja descrição não seja muito complicada.

Os cartões pintados pelos alunos são ainda uma fonte muito rica para explorar a formação de grupos a partir de um critério relacionado com um atributo, com a ordenação e com a cardinalidade.

Para formar grupos usando um critério, o(a) professor(a) pode pedir a 8 alunos que se levantem e exibam os seus cartões. Em seguida pede que se agrupem, de acordo com os critérios que vai indicando e que podem ser, por exemplo, ter:

- 3 círculos verdes;
- círculos pintados com as 4 cores;
- 1 círculo verde;
- "cantos" pintados da mesma cor.

Os alunos que estão sentados podem ir confirmando se os seus colegas estão a cumprir bem as regras que vão sendo indicadas para formar cada grupo. Podem também ir verbalizando, nos casos em que haja indecisões, porque é que um colega deve ou não ser integrado no grupo dos “que usaram 4 cores” ou dos que têm um cartão com “3 círculos verdes”. Note-se que este último critério pode, em rigor, admitir cartões que tenham mais do que 3 círculos. No entanto, numa fase inicial da aprendizagem será de considerar “ter 3” como querendo dizer “ter 3 e só 3”. Mais tarde, haverá tempo e oportunidade para discutir estas diferenças mais subtils em termos da nomeação e identificação de alguns atributos.
A ordenação pode ser trabalhada propondo que os alunos se ordenem de acordo, por exemplo, com o número de círculos pintados de azul: primeiro os que têm 1 círculo pintado de azul, depois os que têm 2, depois os que têm 3, Muito provavelmente surgirá a questão “E quem não tem nenhum círculo pintado de azul?” cuja discussão contribui para um primeiro contacto com a noção de 0 e para a sua colocação na sequência numérica.

A cardinalidade pode surgir associada ao número de círculos pintados de uma determinada cor. O(a) professor(a) pode propor aos alunos que se agrupem se tiverem 4 círculos pintados de uma mesma cor. Deste modo formarão grupo as crianças que pintaram 4 círculos de azul, de verde, de encarnado ou de preto.

Em todas estas propostas surge a necessidade de contar círculos. Nos diálogos que estabelece com as crianças, é importante que o(a) professor(a) as incentive a explicar como é que sabem, por exemplo, que aquele cartão tem 4 círculos azuis. Alguns alunos contam um a um: 1, 2, 3, 4. Outros olham para a imagem global e dizem 4 (fazem *subitizing*, ou seja, reconhecem a mancha sem necessidade de contar). Outros ainda poderão contar de dois em dois: 2, 4.

Tal como referimos inicialmente, esta tarefa deve ser retomada, posteriormente, usando para tal os cartões com dez círculos apresentados.
CONTAR USANDO AS MÃOS

Quantas unhas estão pintadas e quantas faltam pintar em cada uma das figuras?
CONTAR USANDO AS MÃOS
CONTAR USANDO AS MÃOS

As figuras representam imagens das mãos da Sara enquanto pintava as unhas. Qual é a primeira imagem? Como ordená-las?

Imagem A
Imagem B
Imagem C
Imagem D
Imagem E
Tarefa 2 – Contar usando as mãos

Materiais

- Fotocópias das folhas da tarefa
- Duas luvas (luvas em que o polegar “entra” num dos dedos da luva e em que os outros quatro dedos da mão “entram” no mesmo espaço) que serão usadas pelo(a) professor(a) na parte 2 desta tarefa
- *Applet “Imagens rápidas”*
 http://www.fi.uu.nl/toepassingen/00203/leerlingpt.html que pode ser usado pelos alunos na sala de aula, desde que o equipamento existente na escola o permita. Pode, igualmente, ser usado no Acompanhamento ao Estudo ou recomendado o seu uso em casa.

Ideias disponíveis e em desenvolvimento

- Compor e decompor números
- Adicionar usando as decomposições dos números até 10

Ideias e procedimentos a desenvolver

- Identificar e dar exemplos de diferentes representações para o mesmo número
- Resolver problemas envolvendo relações numéricas
- Compreender a adição no sentido acrescentar e combinar
- Compreender a subtração no sentido retirar
- Usar os sinais + e – na representação horizontal do cálculo
- Adicionar e subtrair até 10, privilegiando o uso da decomposição em que um dos termos é 5, um dos termos é 10 ou em que os dois termos são iguais
Sugestões para exploração

Esta tarefa recorre ao uso do material de contagem de que todos dispomos naturalmente – as mãos – para estruturar os números até 10 através da adição e da subtracção. Subjacente a toda a exploração que sugerimos está a ideia de que este “material” não deve ser usado mostrando os dedos 1 a 1 à medida que se vai contando (também de 1 em 1). O objectivo é que as crianças abandonem progressivamente o cálculo baseado na contagem de 1 em 1 (pouco potente) e se sintam mais confiantes no uso do 5 e do 10 como estrutura para adicionar e subtrair.

O enunciado que se apresenta nas folhas da tarefa é relativo a uma primeira parte desta tarefa. Ela é ainda constituída por mais duas partes que, uma vez que são apresentadas oralmente, não necessitam de um enunciado. Na parte 2, o(a) professor(a) usa luvas do tipo das indicadas em Materiais. Observando o que o(a) professor(a) vai mostrando – a mão esquerda com a luva e o dedo polegar da mão direita, as duas mãos com as luvas calçadas, etc. – os alunos procuram responder às questões colocadas.

Na parte 3 o(a) professor(a) propõe uma espécie de jogo. Começa com as mãos atrás das costas. Mostra as mãos abrindo-as de modo a apresentar vários dedos ao mesmo tempo. A criança com quem está a jogar deve responder rapidamente, indicando o número de dedos que o(a) professor(a) mostrou.

Os aspectos explorados em cada uma das partes, devem ser apresentados aos alunos em dias diferentes durante não mais do que 10 minutos de cada vez. As partes 2 e 3 podem ser repetidas durante vários dias, variando os cálculos que se propõem e solicitando a participação de diferentes alunos, pois é aconselhável que todos passem pela situação de ter de dizer rapidamente o número de dedos que são mostrados.

A par do pedido para calcular rapidamente, o(a) professor(a) deve ir solicitando uma explicação sobre o modo como a criança “viu” o número de dedos mostrados (parte 3) ou de unhas pintadas (parte 1). Deste modo, pode ir-se gerando a partilha de diferentes estratégias, ajudando a perceber e a usar as mais potentes.

As sugestões de exploração que apresentamos para as partes 2 e 3 assentam no pressuposto que estas são dinamizadas pelo(a) professor(a) pois é ele(a) que mostra as mãos. Embora isto deva acontecer numa fase inicial, pois é muito importante o modo e a quantidade de dedos que são mostrados, será conveniente introduzir mais tarde outras formas de exploração. Algumas crianças podem substituir o(a) professor(a) e ir mostrando os dedos das suas mãos aos colegas. Pode também organizar-se uma espécie de jogo em que...
duas crianças vão, alternadamente, mostrando e calculando o número de dedos que a outra mostra.

A sequência das questões foi pensada de modo a estruturar progressivamente a adição e a subtração a partir de contagens baseadas em agrupamentos que privilegiam o uso do 5 e do 10 para estruturar os números. Na parte 1, o contexto permite que as crianças ainda calculem contando 1 a 1 os dedos com as unhas pintadas e por pintar. Na parte 2, o uso da luva é uma forma de procurar que os alunos abandonem progressivamente a contagem 1 a 1 e comecem a adicionar e subtrair usando grupos e não apenas a contagem directa de objectos. Finalmente, na parte 3, introduz-se uma espécie de jogo que pode ser usado em diferentes ocasiões, durante curtos espaços de tempo. Este jogo corresponde ao que é pedido no applet “imagens rápidas”, quando se selecciona a opção do uso das duas mãos. Desde que haja condições materiais para tal, é interessante explorar este applet. No entanto, tal só deverá acontecer depois de fazer várias vezes com os alunos a parte 3 desta tarefa.

1.ª Parte

Na primeira questão da parte 1, referente às duas primeiras folhas da tarefa, é importante pedir aos alunos que, depois de observarem as figuras, expliquem como determinaram, em cada uma, o número de unhas pintadas. Há crianças que contam apontado as unhas pintadas:

- 1, 2, 3, 4;
- 1, 2, 3, 4, 5, 6, 7;
- 1, 2, 3;
- 1, 2, 3, 4, 5;
- 1, 2, 3, 4, 5, 6, 7, 8, 9.

No entanto, outras já conseguem indicar, a partir de uma observação rápida de cada figura, o número de unhas pintadas (e por pintar) justificando as respostas que dão a partir de somas e diferenças, apoiando-se no 5 ou no 10.

Depois da exploração oral desta parte da tarefa o(a) professor(a) pode introduzir também a representação escrita do número de unhas pintadas e por pintar.

No contexto de ordenação das imagens (segunda questão da parte 1 – terceira folha da tarefa), o(a) professor(a) pode colocar algumas questões adicionais, como por exemplo:
Números naturais, Adição e subtração e Regularidades

Como poderia ser uma imagem que ficasse entre a imagem A (4 unhas pintadas) e a imagem B (7 unhas pintadas)?

E entre a A (4 unhas pintadas) e a E (9 unhas pintadas)?

2.ª Parte

A parte 2 pretende apoiar o abandono progressivo da contagem 1 a 1 pois há quatro dedos da mão que estão escondidos. O(a) professor(a) deve começar por calçar uma luva numa das mãos e perguntar quantos dedos ficam em cada parte da luva. Só depois é que deve começar a usar as duas luvas. As questões que o(a) professor(a) coloca com as luvas permitem que as crianças aprendam a calcular rapidamente:

- $4+1, 1+4, 5 - 4$ e $5 - 1$ (a partir do uso da luva numa das mãos)
- $4+4, 5+4, 10 - 5; 10 - 4, 10 - 1$ (a partir do uso das duas luvas)

Esta parte da tarefa deve ser concluída com os registos escritos que traduzem os cálculos efectuados.

3.ª Parte

Na primeira vez que o(a) professor(a) explora os aspectos incluídos na parte 3 é importante organizar um conjunto de questões que tenha em conta três fases sequenciais:

i) Saber adicionar e subtrair tendo como referencial o 5 e partindo da ideia de que em cada mão temos 5 dedos;

ii) Saber adicionar e subtrair tendo como referencial o 10 e partindo da ideia de que no conjunto das duas mãos temos 10 dedos;

iii) Saber adicionar e subtrair até 10 usando o 5 e o 10 como estrutura.

Considerando esta sequência, o(a) professor(a) pode adoptar a ordem de acções e questões que a seguir se apresenta.

i) Usar uma só mão:

- (mostrando a mão aberta) Quantos dedos estou a mostrar?
- (mostrando 4 dedos, o polegar dobrado) E quantos vêem agora? Como pensaram?
- (mostrando três dedos, o polegar e o indicador dobrados) E agora? E quantos estão escondidos? Como pensaram?
Mostrem-me 2 dedos. Mostrem-me 5 dedos. E como é que me conseguem mostrar 3 dedos?

ii) Usar as duas mãos e considerar sempre todos os dedos de uma delas para quantidades superiores a 5:

- Mostrem-me 2 dedos abertas. Quantos dedos estão a mostrar?
- Mostrem-me 5 dedos. E quantos vêem agora? Como pensaram?
- Mostrem-me 3 dedos. E quantos estão dobrados? Como pensaram?
- Mostrem-me 8 dedos. E quantos estão dobrados? Como pensaram?

iii) Usar as duas mãos de modo diferente que em ii):

- Mostrem-me 6 dedos. Mostrem-me 7, como fazem?

Devem ser feitos os registos escritos de alguns dos cálculos anteriores. No entanto, é importante não quebrar a dinâmica de acção que esta fase da tarefa suscita. Por isso, só depois de se ter estado durante algum tempo a explorar oralmente a tarefa é que se deve pedir a representação escrita de alguns dos cálculos efectuados.

Tal como foi referido anteriormente, se os materiais tecnológicos disponíveis na escola o permitirem, será interessante explorar o jogo “imagens rápidas” apenas na opção correspondente à imagem com as duas mãos. As outras opções desse applet só são adequadas em fases posteriores da aprendizagem.

Possíveis caminhos a seguir pelos alunos

Na parte 1, para indicar o número de unhas pintadas (e por pintar) em cada figura os alunos podem usar diferentes estratégias. Algumas delas são apresentadas nos diálogos de Cátia, Miguel e Afonso com a sua professora.
Cátia: 1, 2, 3, 4, 5, 6 e 7. Há 7 unhas pintadas. Há 3 por pintar.
Professora: Como sabes que ficam três por pintar?
Cátia: Olhei e vi.

Miguel: Há 4 unhas pintadas ... e 6 sem nada.
Professor(a): Consegues explicar como pensaste?
Miguel: 5 menos 1 é 4.
Professora: Mas onde é que vês o 5 menos 1?
Miguel: Olho para a primeira mão. Tenho 5 dedos e tiro o que não está pintado.
Professor(a): Sim. E depois?
Miguel: Esse dedo junto aos dedos da outra mão e ficam 6 não pintados.

Afonso: Há 9 dedos pintados e falta pintar 1.
Professor(a): Podes explicar aos teus colegas como pensaste?
Afonso: Pensei que 5 mais 4 é 9. E vi que há 1 por pintar.
Cátia – Eu vi de outra maneira!
Professor(a) – Então explica lá!
Cátia – Eu sei que 5 mais 5 são 10. Está 1 por pintar, então ficam 9 pintadas.

Para ordenar as imagens os alunos podem usar diferentes estratégias. Algumas delas são apresentadas nos diálogos de Rita e João com o(a) professor(a).

Rita: Eu olhei para as minhas mãos e fingi com o marcador que pintava as unhas.
Professor(a): Podes mostrar como fizeste?
Rita: Comecei a pintar esta [mão esquerda]. A primeira era esta [aponta a imagem com 3 unhas pintadas], depois era esta [aponta a imagem com 4 unhas pintadas] ...

João: Dedos pintados numa mão há em três imagens. Contei 3, 4, 5 e vi que era primeiro esta e [aponta a imagem com 3 unhas pintadas]. Depois era esta [aponta a imagem com 4 unhas pintadas] A primeira imagem era esta [aponta a imagem com 3 unhas pintadas], depois era esta [aponta a imagem com 4 unhas pintadas] e depois esta [aponta a imagem com 5 unhas pintadas]. Depois vi com a outra mão.
Professor(a): Sim. E como fizeste?
João: Contei e vi se havia o número.
Professor(a): Podes explicar melhor?
João: Então contei 6, 7, 8 e 9 e vi que o 6 não havia. Depois o 7 havia, 8 não e 9 havia.
Na parte 2 da tarefa os alunos são incentivados a abandonar a contagem de 1 em 1 e a pensar com base: i) no 5 e na sua decomposição em 4 + 1; ii) no 10 e nas suas decomposições que assentam na decomposição de 5 em 4 + 1.

Quando o(a) professor(a) usa apenas uma luva e pergunta quantos dedos está a mostrar, os alunos podem, por exemplo, responder:

- 5 dedos porque tens 1 e 4. 1 mais 4 são cinco.
- 4 dedos porque aos 5 tira-se 1.

Quando o(a) professor(a) usa as duas luvas e pergunta quantos dedos está a mostrar, os alunos podem, por exemplo, responder:

- São 4 aqui e 4 na outra mão. 4 e 4 são 8.
- São 9. Só não mostra 1 dedo.
CONTAR CUBOS

Cartões com números

1 2 3

4 5

6 7 8

9 10
CONTAR CUBOS

Grelha quadriculada

1 2 3 4 5 6 7 8 9 10
Tarefa 3 – Contar cubos

Materiais

- Cartões com números de 1 a 10 (recortar previamente)
- Cubos de encaixe de duas cores
- Fotocópias da grelha quadriculada

Ideias disponíveis e em desenvolvimento

- Compor e decompor números
- Contar até 10
- Compreender que, ao contar os elementos de um conjunto, o último número verbalizado corresponde ao número total de elementos (noção de cardinal)

Ideias e procedimentos a desenvolver

- Realizar contagens progressivas e regressivas, representando os números envolvidos
- Identificar e dar exemplos de diferentes representações para o mesmo número
- Resolver problemas envolvendo relações numéricas
- Associar uma quantidade até dez ao numeral

Sugestões para exploração

A exploração desta tarefa deve ser realizada durante cerca de 60 minutos. Numa primeira parte, o(a) professor(a) começa por mostrar um cartão de cada vez e pede aos alunos para levantarem os dedos das mãos correspondentes.

Este trabalho deve ser feito inicialmente usando os cartões, de forma não sequencial, com os numerais até 5 e posteriormente até 10. Com esta tarefa...
o(a) professor(a) pode identificar eventuais dificuldades na associação entre o numeral e a quantidade respectiva.

Note-se que o recurso aos dedos das mãos permite que o aluno recorra a uma parte do seu corpo com a qual lida facilmente no seu dia-a-dia. As mãos permitem ainda evidenciar naturalmente o 5 e o 10 como números de referência. Por exemplo, ajudam a perceber que o 7 pode ser representado com mais 2 dedos que 5 ou menos 3 que 10.

Depois desta primeira parte, o(a) professor(a) disponibiliza cubos de encaixe de duas cores e propõe que construam torres de acordo com os cartões com numerais que vai mostrando, mais uma vez, de forma não sequencial.

O facto de se utilizarem duas cores, proporciona ocasiões para o(a) professor(a) incentivar o abandono progressivo da contagem 1 a 1.

Esta torre incentiva a contagem usando grupos (2+2 são 4; 4+2 são 6; 6+1 são 7) e não uma contagem 1 a 1: 1, 2, 3, 4, 5, 6, 7.

Esta torre incentiva a contagem usando grupos (3+3 são 6; 6+1 são 7) e não uma contagem 1 a 1: 1, 2, 3, 4, 5, 6, 7.

Também nesta fase é fundamental que o(a) professor(a) recorra primeiro a cartões com numerais até 5 e só posteriormente use os cartões com os numerais até 10. Esta tarefa pode ser feita apenas num dia ou, se os alunos revelarem algumas dificuldades na associação numeral-quantidade, pode ser retomada num outro dia.

Posteriormente, o(a) professor(a) distribui a grelha quadriculada em que cada quadrado corresponde à face dos cubos disponibilizados. Com o seu preenchimento pretende-se que os alunos identifiquem o numeral que corresponde ao número de cubos de cada torre.

O(A) professor(a) pode começar por pedir aos alunos para colorirem os quadrados que correspondem à torre do 4 e à torre do 7.
Em seguida, coloca questões do tipo:

- Qual é a torre que devemos juntar à torre do 4 para obter a do 7?
- Quantos quadrados o 7 tem a mais do que o 4?
- Pintem os quadrados que correspondem à torre do 8. Como pensaram para pintar?

O objectivo destas questões é que os alunos preencham a grelha, relacionando o número de cubos das torres entre si e, simultaneamente, associem o numeral ao número de quadrados pintados em cada coluna.

Depois do preenchimento da grelha, o(a) professor(a) pode fazer algumas perguntas de modo a realçar a sequência numérica e a evidenciar a ordenação dos números. Para tal, poderá colocar questões do tipo: “Qual o número que está antes do 4? E depois?”. Pode ainda propor contagens progressivas e regressivas, por exemplo, pedindo: “Conta a partir do 4 para a frente. Agora, conta para trás”.

Possíveis caminhos a seguir pelos alunos

Quando o(a) professor(a) inicia a tarefa mostrando os cartões e pede aos alunos para mostrarem os correspondentes dedos das mãos, há alunos que só conseguem relacionar o numeral com a quantidade contanto a partir do 1 e há outros que, sem contar um a um, mostram de imediato os 4 dedos.
Os alunos podem mostrar os 4 dedos de diferentes formas:

Estas formas de representar a quantidade 4 (0 + 4, 3 + 1 e 2 + 2), correspondem a decomposições diferentes do número 4.

Quando o(a) professor(a) mostra o cartão

os alunos podem mostrar:

Estas duas respostas, igualmente correctas, para além de corresponderem a diferentes decomposições do número 7, podem originar também uma exploração em que se trabalha a propriedade comutativa da adição, comparando o 3 + 4 com o 4 + 3 e o 5 + 2 com o 2 + 5.

Do ponto de vista da progressão da aprendizagem, o primeiro modo de representação tem por base o uso da estrutura do 5, estrutura esta que deve ser progressivamente valorizada na representação de números superiores a 5. Deste modo, a representação com os dedos correspondente ao cartão 6, tenderá a surgir do seguinte modo: uma mão aberta (5 dedos) mais um dedo da outra mão.
Quando os alunos têm alicerçada a estrutura do 5, podem pensar o 4 como 5 - 1, abrindo uma mão e escondendo o polegar. Ao mostrar os cartões próximos do 10, os alunos podem recorrer a diferentes representações. Por exemplo, quando se mostra o cartão 8 há alunos que:

- Mostram uma mão com 5 dedos e mais outra com 3;
- Mostram as duas mãos e escondem 2 dedos de uma delas.

Estas estratégias traduzem o uso da estrutura do 5 e do 10.

Nem sempre é fácil para o(a) professor(a), a partir do modo como os alunos mostram os dedos das mãos, perceber as estruturas em que baseiam a sua representação. Por exemplo, perante o cartão com o número 8, tanto Miguel como Raquel mostraram 4 dedos de cada mão. Miguel, ao explicar como fez, mostrou os 10 dedos e escondeu os 2 polegares. Raquel explicou: “contei 4 (mostra 4 dedos de uma mão) e mais 4 (e mostra a outra mão) ”. Miguel pensa em 10 como 5 + 5 e o 4 como 5 - 1. Raquel, não parte da estrutura do 10 nem do 5 e usa o conhecimento de que 4 + 4 são 8.

Na fase da construção das torres, o modo como os alunos organizam os respectivos cubos pode traduzir as estruturas que usam para representar os números.

Alexandre e António usaram a estrutura do 5 para representar 10 e 7, respectivamente. Já as torres que Inês e João construíram não parecem evidenciar o recurso a qualquer tipo de estrutura que facilite a contagem.
Durante o preenchimento da grelha, as explicações que os alunos apresentam sobre o modo como pensaram para pintar os quadrados podem traduzir relações que estabelecem entre os números da sequência:

- **Joana explica**: “no 8, fiz 7 mais 1”;
- **Rui afirma**: “para pintar o 9 pensei que era 7 mais 2”;
- **Inês diz**: “para o 9, vi que havia 10 e tirei 1”.

USANDO COLARES DE CONTAS
USANDO COLARES DE CONTAS

3

___?

___?

___?

___?

___?

10

___?

___?

10

___?
Tarefa 4 – Usando colares de contas

Materiais

- Fotocópias da folha da tarefa
- Fotocópias da folha de apoio com os colares de contas desenhados, em formato A4 ou A3
- 20 contas (10 de uma cor e 10 de outra) para cada aluno e 1 fio com comprimento adequado para enfiar as contas

Ideias disponíveis e em desenvolvimento

- Usar a sequência numérica de forma progressiva e regressiva, pelo menos, até 10
- Fazer o subitize de pequenas quantidades
- Contar a partir de um número (entre 1 e 10)

Ideias e procedimentos a desenvolver

- Realizar contagens progressivas e regressivas, representando os números envolvidos
- Comparar e ordenar números
- Resolver problemas envolvendo relações numéricas
- Formar grupos e reconhecer a sua importância na estruturação e desenvolvimento das competências de contagem
- Usar os números 5, 10, 15, 20 como números de referência

Sugestões para exploração

Esta tarefa foi pensada com o objectivo de desenvolver competências de contagem de modo estruturado, usando o colar de contas. Numa primeira fase os alunos devem resolver os quatro problemas propostos na folha da tarefa, sugeridos pelas imagens. O(A) professor(a) deve realçar que, durante a

4 Na concepção desta tarefa participou também Conceição Patrício.
resolução dos problemas, os alunos devem recorrer às representações dos colares de contas disponíveis, escolhendo o que preferem para os apoiar na resolução dos mesmos. Esta fase ocupa cerca de 60 minutos.

Depois da resolução dos problemas é importante que os alunos verbalizem e fundamentem as suas escolhas. Em grande grupo devem ser discutidas as vantagens do uso de um colar em relação aos outros, realçando a importância dos números envolvidos e da sua relação com a estrutura veiculada por cada um. Por exemplo, no caso da contagem das cerejas, porque estão organizadas em grupos de duas, é mais eficaz usar como modelo de apoio, o colar com as contas com as duas cores de 2 em 2. Já a situação dos copos e das garrafas induz o uso do colar de contas organizadas em grupos de 5.

O propósito principal desta tarefa é apoiar a estruturação do sistema decimal. Neste sentido e de modo a resolver problemas usando estratégias eficazes, poder-se-ia pensar em construir um colar com 10 contas consecutivas, no entanto no trabalho dos números até 20, muitos valores numéricos envolvidos levariam a contagens de 1 em 1 e não por grupos.

Por exemplo, para efectuarem 5+7 os alunos contavam de 1 em 1 para localizar o 5 e depois poderiam continuar essa forma de contar a partir do 5. Isto porque a estrutura subjacente no enfiamento não facilita a utilização destes números.

Outra situação em que o enfiamento de 10 em 10 não facilita, consiste, por exemplo, localizar no colar de contas o número 6. Do mesmo modo os alunos tenderiam a efectuarem a contagem 1 a 1, até 6.

Numa segunda fase, durante cerca de 30 minutos, cada aluno constrói o seu colar de contas, utilizando 2 cores organizadas de 5 em 5 e usa-o para responder às questões que o(a) professor(a) lhe coloca com o objectivo de criar rotinas para o uso deste material como apoio à resolução de problemas numéricos.

As propostas e sugestões iniciais devem ser da iniciativa do(a) professor(a) de modo a estruturar progressivamente as contagens baseadas em agrupamentos que privilegiem a estrutura do 5 e do 10. Por exemplo deve começar-se por pedir aos alunos que localizem os números de referência (5, 10, 15 e 20) e, em seguida, os que lhe são próximos (4, 6, 9, 11, ..., 19). Neste último caso é fundamental que os alunos justifiquem o modo como pensaram. O(A) professor(a) deve salientar as estratégias que recorrem ao uso dos números de referência.

A localização de cada número é feita, em primeiro lugar, no colar de contas e, mais tarde, poderá ser realizada numa sua representação. O sítio de cada número de referência (5, 10, 15 e 20) pode ser marcado, inicialmente, apenas
com um traço, no entanto, algumas crianças começam a escrever os respectivos numerais por cima ou por baixo do traço (ver figura seguinte).

O trabalho com o colar de contas deve ser retomado periodicamente ao longo de vários dias, recorrendo fundamentalmente à oralidade, de modo que os alunos se familiarizem com este material estruturado e o utilizem como apoio à contagem.

Possíveis caminhos a seguir pelos alunos

Sugere-se que, durante a resolução dos problemas, os alunos recorram aos colares de contas (como material estruturado para efectuar as contagens) escolhendo o que preferem para os apoiar na resolução dos mesmos. Assim, por exemplo, para resolver o problema das garrafas, João e Maria utilizaram estratégias diferentes.

João fez o seguinte:

Ao explicar João diz: “1, 2, 3, 4, 5, uma garrafa. Depois, 1, 2, 3, 4, 5, duas garrafas. E, mais 1, 2, 3, 4, 5 copos, três garrafas. Depois, contei 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15. Deu 15 copos”.

Esta resolução pressupõe que o aluno ainda não utiliza, na sua contagem, a estrutura de 5 como um grupo.
Maria fez:

Maria associou a cada grupo de 5, uma garrafa, e contou de 5 em 5 até ao 15.

Estas respostas podem constituir boas oportunidades para o(a) professor(a) explorar outras resoluções, que podem surgir dos alunos, como por exemplo:

- **5 + 5 + 5 = 15** (sendo 5 + 5 = 10; 10 + 5 = 15, correspondendo a cada garrafa 5 copos).
- **10 + 5 = 15** (significando que o aluno associou 2 garrafas a um grupo de 10 copos mais 1 garrafa – vista como um grupo de 5 copos).
Onde está?
Tarefa 5 – Onde está?

Materiais

- Fotocópias da folha da tarefa

Ideias disponíveis e em desenvolvimento

- Identificar números em contextos do quotidiano

Ideias e procedimentos a desenvolver

- Compreender várias utilizações do número e identificar números em contextos do quotidiano

Sugestões para exploração

Com esta tarefa pretende-se que o aluno identifique números em diversos contextos e que compreenda que os números podem ser usados em diferentes situações. Dependendo dessas situações, os números podem estar associados à ideia de cardinal de um conjunto de objectos, à ideia de ordinal ou podem servir para identificar ou localizar algo. No entanto, não é objectivo da tarefa que os alunos nomeiem as diferentes funções dos números, trata-se de uma primeira abordagem informal e intuitiva às diferentes funções do número.

Na sala de aula, o(a) professor(a) deve pedir aos alunos que procurem os diferentes números representados na folha de apoio. À medida que os forem encontrando o(a) professor(a) deve questionar sobre a função do número envolvido em cada situação mas apenas de modo informal. Por exemplo, o número 6 que está representado na caixa dos lápis corresponde à quantidade de lápis existente na caixa. Já os números representados nos livros servem para ordenar a coleção de livros, não estando associados, à partida, a qualquer quantidade. O número de telefone não está associado nem à ideia de cardinal nem de ordem, tendo como função identificar o proprietário do telefone. Quando na placa se refere “gabinete 35”, o 3 representa o piso e o número 5 o número da sala desse piso. O número 35 surge, assim, com a função de localizar. Relativamente aos números do calendário, relógio e
dinheiro, estes estão associados a grandezas, nomeadamente às grandezas tempo e dinheiro.

Durante este trabalho é fundamental que o(a) professor(a) incentive os alunos a darem exemplos de outras situações onde aparecem os números e que fazem parte das suas experiências quotidianas, nas quais os números surgem com significados diferentes. A forma como estão organizados os números no painel do elevador pode ser um pretexto para fazer uma primeira abordagem das sequências associadas aos números pares e ímpares, aspectos explorados em tarefas posteriores.

Possíveis caminhos a seguir pelos alunos

Com o propósito de identificar números em contextos do quotidiano o(a) professor(a) pode desafiar os alunos a, durante um fim-de-semana, fixarem 2 ou 3 situações onde tenham conseguido identificar números. Neste âmbito podem surgir, por exemplo, as seguintes situações:

Marisa conta que, na charcutaria, a mãe tirou a senha com o número 12 e mostrou a respectiva senha.

Tânia foi ao cinema e trouxe o seu bilhete. Nele identifica os números associados ao preço, à data, à hora, à sala e ao lugar onde estava sentada.
Miguel mostra um envelope de uma carta recebida em casa, identificando os números que constam na morada.

Sílvia traz um pacote de bolachas e refere-se aos números do código de barras.

A partir dos exemplos trazidos pelos alunos, o(a) professor(a) deve averiguar qual o significado que eles atribuem aos números em cada uma das situações. Por exemplo, no caso da senha da charcutaria apresentada por Marisa, o que representa o número 12? É importante que os alunos percebam que significa que, quando chegou a vez da mãe da Marisa, já tinham sido atendidas 11 pessoas. Neste caso, o número 12 representa a ordem pela qual a mãe de Marisa foi atendida na charcutaria. O(A) professor(a) pode também trabalhar a ordem dos números, colocando questões do tipo: "Qual era o número da senha da pessoa que foi atendida antes? E o da pessoa que terá sido atendida depois?".
PAR OU ÍMPAR

Folha de registo

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PAR OU ÍMPAR

Peças para recortar
Tarefa 6 – Par ou ímpar

Materiais

- Fotocópias da folha de registo e da folha de peças para recortar
- Lápis de cor

Ideias disponíveis e em desenvolvimento

- Comparar e ordenar números
- Realizar contagens, representando os números envolvidos
- Compreender intuitivamente a noção de rectângulo

Ideias e procedimentos a desenvolver

- Investigar regularidades numéricas
- Identificar e dar exemplos de números pares e ímpares

Sugestões para exploração

O propósito principal desta tarefa é contribuir para a compreensão das noções de número par e de número ímpar. O que se pretende é que os alunos construam rectângulos e associem o número total de quadrados que os constituem à sequência dos números pares.

Recorrendo a peças formadas por dois quadrados previamente recortados pelo(a) professor(a), a ideia é que os alunos construam rectângulos e os representem, na folha de registo de rectângulos colocada na horizontal, pintando os quadrados. O(A) professor(a) deve começar por exemplificar a construção de um rectângulo, justapondo, por exemplo, 3 peças:

![Diagrama de peças formadas por quadrados]

5 Objectivo do tema Geometria e medida

Joana Brocardo, Catarina Delgado e Fátima Mendes 43
Em seguida, deve efectuar a representação do rectângulo na folha de registo, pintando 6 quadrados:

Depois de algum tempo de exploração individual ou a pares, o(a) professor(a) deve incentivar os alunos a observar os diferentes rectângulos construídos e o número de quadrados pintados de cada um deles. Pode fazer, com a ajuda dos alunos, a ordenação dos diferentes rectângulos, por exemplo, afixando-os no quadro. Surge, assim, a sequência dos números pares (de 2 a 20).

Neste momento o(a) professor(a) deve colocar perguntas do tipo:

- Observem os rectângulos, como os construíram?
- Que número fica entre o 6 e o 8? Conseguimos construir um rectângulo com esse número de quadrados?
- E, que número fica entre o 10 e o 12? Também dá para construir um rectângulo com esse número de quadrados?

A partir da discussão gerada surgem as noções, ainda que intuitivas, de números pares e ímpares. Os alunos podem compreender que, como a construção dos rectângulos obedece à condição de estes serem construídos por peças com dois quadrados, a sequência dos números obtida “anda de dois em dois”.

Os alunos desta idade não consideram o quadrado como um caso particular de um rectângulo. Isto é natural pois estão ainda numa fase em compreendem as figuras globalmente, ou seja, as figuras são entendidas pela sua aparência (que corresponde ao primeiro nível de aprendizagem da geometria – visualização – na teoria de van Hiele). Só progressivamente começam a entender as figuras geométricas como o conjunto das suas propriedades.
(análise - segundo nível de aprendizagem da geometria na teoria de van Hiele) e a ordená-las logicamente (ordenação - terceiro nível de aprendizagem da geometria na teoria de van Hiele).

Coloca-se a questão de saber o que será mais adequado dizer quando os alunos constroem os quadrados 2x2 ou 4x4 e que são, de facto, rectângulos. Se os alunos estiverem ainda numa fase de desenvolvimento muito marcada pela visualização global das figuras, o(a) professor(a) pode alargar o pedido, solicitando que construam quadrados e rectângulos. Deste modo, surge sem grandes problemas a sequência dos pares de 2, 4, 6, 8, ..., 20.

A representação dos números ímpares até 20 pode ser um desafio que o(a) professor(a) coloca aos alunos, de modo a incentivá-los a fazer algumas conjecturas sobre números pares e ímpares. Como indica a figura seguinte, as duas sequências “encaixam” uma na outra, surgindo os números naturais até 20.

A observação dum esquema deste tipo pode salientar relações entre os números, nomeadamente:

- Antes e depois de um par há um ímpar;
- Antes e depois de um ímpar há um par, excepto no caso do 1;
- Um par é sempre um ímpar mais 1;
- Um ímpar é sempre um par mais 1, excepto no caso do 1;
- Os pares andam de 2 em 2 e os ímpares também, etc.
Possíveis caminhos a seguir pelos alunos

Os rectângulos construídos pelos alunos podem ser constituídos por vários quadrados dispostos em linha (tanto na vertical como na horizontal). Por exemplo, Tiago representou o rectângulo da figura ao lado, pintando, na totalidade, 8 quadrados:

Esta representação resultou da justaposição de 4 peças do seguinte modo:

Já Ana optou pela seguinte construção, também com um total de 8 quadrados:

Que resultou da justaposição das peças do seguinte modo:
É importante que os alunos verbalizem o processo de construção dos rectângulos. Por exemplo, Ana afirma: “Fui juntando dois quadrados de cada vez, 2, 4, 6, 8. Fiquei com 8 quadrados.” Esta resposta evidencia, ainda de modo informal, o início da sequência dos números pares. Uma outra aluna, Andreia afirma: “Fui juntando dois quadrados de cada vez”. Este tipo de resposta traduz uma descrição, ainda que intuitiva, da lei de formação dos números pares.

Perante a questão: “Conseguimos construir um rectângulo com 5 quadrados?”, Tiago e João respondem:

 Tiago: Não, porque fica um quadrado a mais.
 João: Não, falta um quadrado.

Estas respostas podem constituir boas oportunidades para o(a) professor(a) levar os alunos a compreenderem que um número par é sempre um ímpar mais 1 ou um ímpar menos 1.

Extensão

As sequências dos números pares e ímpares devem ser retomadas posteriormente, podendo o(a) professor(a) recorrer a uma tarefa semelhante mas ampliando o conjunto numérico associado.
Sequência 2

Números naturais, Adição e subtracção e Regularidades
Números e operações – 1.º Ano – SEQUÊNCIA 2

<table>
<thead>
<tr>
<th>Tópicos</th>
<th>Objectivos específicos</th>
<th>Notas</th>
<th>Tarefas</th>
<th>Organização temporal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adição</td>
<td>- Compreender a subtração no sentido retirar.</td>
<td></td>
<td>Pães-de-leite</td>
<td>Tarefa para ser explorada durante cerca de 90 minutos</td>
</tr>
<tr>
<td>Subtração</td>
<td>- Representar números na recta numérica.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Resolver problemas envolvendo relações numéricas.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relações numéricas</td>
<td>- Compreender a subtração nos sentidos completar e comparar.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Compreender e memorizar factos básicos da adição e relacioná-los com os da subtração.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Inventar regularidades numéricas.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Relacionar entre si dia, semana e mês.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Resolver problemas envolvendo situações temporais.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adição</td>
<td>- Compreender a subtração nos sentidos retirar e completar.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtração</td>
<td>- Ler, explorar e interpretar informação (apresentada em gráficos de pontos) respondendo a questões e formulando novas questões.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Adicionar e subtrair utilizando a representação horizontal e recorrendo a estratégias de cálculo mental.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regularidades</td>
<td>- Investigar regularidades numéricas.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Relacionar entre si dia, semana e mês.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Resolver problemas envolvendo situações temporais.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adição</td>
<td>- Adicionar e subtrair utilizando a representação horizontal e recorrendo a estratégias de cálculo mental.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtração</td>
<td>- Compreender a subtração nos sentidos retirar e completar.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Ler, explorar e interpretar informação (apresentada em gráficos de pontos) respondendo a questões e formulando novas questões.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Adicionar e subtrair utilizando a representação horizontal e recorrendo a estratégias de cálculo mental.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6 Estas notas estão incluídas no tema Geometria e Medida, no tópico Tempo.
7 Este objectivo é do tema Organização e Tratamento de Dados, do tópico Representação e interpretação de dados.
8 Este objectivo é do tema Geometria e Medida, do tópico Tempo.
9 Este objectivo é do tema Geometria e Medida, do tópico Tempo.
10 Estas notas estão incluídas no tema Geometria e Medida, no tópico Tempo.
Números naturais, Adição e subtração e Regularidades

Pães-de-leite

11 Imagens retiradas de ARTHUR’S BOYS & GIRLS CLIPART (http://www.arthursclipart.org/children/togethercol.htm)
Tarefa 1 – Pães-de-leite

Materiais

- Fotocópias da folha da tarefa

Ideias disponíveis e em desenvolvimento

- Resolver problemas envolvendo adições e subtrações

Ideias e procedimentos a desenvolver

- Compreender a subtração no sentido de retirar
- Adicionar e subtrair até 20, privilegiando o uso de composições e decomposições em que um dos termos é 5

Sugestões para exploração

A ideia desta tarefa é que os alunos caminhem para a estruturação do 20 em grupos de 5, ou seja, que sejam capazes de efectuar contagens de 5 em 5, abandonando gradualmente a contagem 1 a 1. Para isso recorreu-se, intencionalmente, a imagens de sacos (opacos) com 5 pães-de-leite cada, de modo a evitar a contagem dos mesmos.

A exploração desta tarefa deve ser organizada alternando momentos de trabalho em grande grupo com momentos de trabalho individual.

As questões devem ser feitas oralmente para, por um lado, facilitar a interpretação das imagens e do contexto associado e, por outro, salientar a necessidade de os alunos verbalizarem o modo como pensaram, aspecto que deve ser valorizado, também, na exploração das restantes questões.

Depois de cada aluno ter o enunciado da tarefa, o(a) professor(a) desafia-os a observar a primeira imagem e pode apresentar a seguinte situação:

- Ontem fui ao supermercado e comprei pães-de-leite em sacos como este. O meu filho João comeu logo dois. Quantos sobraram?

12 Na concepção desta tarefa participou também Conceição Patrício.
O sentido da subtração associado ao problema é o de retirar, pelo que a estratégia mais natural é a contagem regressiva que, neste caso, corresponde a pensar nos pães que existiam no saco e ir retirando até chegar à quantidade 3. No entanto, alguns alunos podem efectuar contagens progressivas ou ainda recorrer à decomposição do 5, dizendo: são 3, porque 3+2 são 5.

Durante a exploração desta questão o(a) professor(a) deve ir registando no quadro as estratégias usadas pelos alunos, de modo a funcionar como modelo para o tipo de registo que se pretende que os alunos façam ao longo da resolução das restantes questões.

A observação da segunda imagem da folha da tarefa leva os alunos a pensar no número de sacos necessários se seis crianças comerem um pão-de-leite cada uma e, ainda, no número de pães-de-leite que sobram.

Inicialmente, o(a) professor(a) deve colocar questões sobre a imagem:

🌟 O que vêem na imagem?
🌟 Quantas são as crianças?
🌟 Porque é que estará um pão-de-leite perto de cada menino?

Caso os alunos tenham dificuldade em interpretar esta segunda imagem, o(a) professor(a) pode colocar uma questão do tipo:

🌟 Hoje à tarde o João vai convidar 5 amigos para lanchar. Se o João e cada um dos amigos comer um pão-de-leite, quantos sacos terei de comprar? E quantos pães sobram?

Para determinarem o número de sacos necessários, os alunos têm de compreender que precisam de mais do que um saco, porque 6 é mais do que 5. Também têm de usar o conhecimento de que dois sacos levam 10 pães, porque 5 + 5 são 10. Têm ainda que reconhecer que 6 é uma parte de 10.

A terceira e última imagem da folha da tarefa conduz a uma questão do tipo:

🌟 Se em vez de 5, vierem 7 amigos, quantos pães sobram?

Para além das questões que decorrem directamente da observação das três imagens da folha da tarefa, o(a) professor(a) pode ainda colocar, oralmente, questões como as que se seguem:

🌟 Se comprar 3 sacos, quantos pães-de-leite compre?
🌟 Comprei 3 sacos e comeram-se 12 pães-de-leite. Quantos sobraram?
🌟 Quantos sacos preciso de comprar para que 19 crianças possam comer 1 pão-de-leite cada uma?
O professor pode ainda utilizar cubinhos de encaixe, com duas cores alternadas, para simular este último conjunto de questões, permitindo estruturar o 20 recorrendo a grupos de 5, tal como mostra a imagem:

É fundamental que o(a) professor(a), ao longo da exploração de toda a tarefa, vá pedindo aos alunos para explicarem como pensaram, permitindo fazer sobressair os números estruturados em grupos de 5 e de 10.

Para a maior parte dos alunos as imagens da folha da tarefa são suficientes para a sua compreensão. No entanto, para outros, pode ser necessário disponibilizar sacos opacos em que se colocam peças (cubos, bolas, caricas, etc.) que simulam os pães-de-leite.

Possíveis caminhos a seguir pelos alunos

Para resolverem a questão associada à primeira imagem os alunos podem:

- **Efectuar contagens progressivas** – 3, 4, 5, sobram 3;
- **Efectuar contagens regressivas** – 5, 4, sobram 3;
- **Recorrer à decomposição do 5**, dizendo: são 3 porque 3+2 são 5.

Na resposta à questão relacionada com a segunda imagem, sobre o número de pães que sobram, os alunos podem:

- **Contar a partir do 6 até ao 10 progressivamente** – 7, 8, 9, 10, sobram 4;
- **Podem também pensar nas decomposições do 5 e do 10**, concluindo que sobram 4 porque 5+1+4 são dez.

Na resolução da terceira questão, associada à última imagem, para além de poderem usar as mesmas estratégias que na questão anterior, os alunos podem ainda:

- **Pensar que, se com 6 amigos sobram 4 pães (relacionando com a resposta à questão anterior), com 8 sobram 2, porque 6+4 são 10, logo 8+2 também são 10 (uso da ideia de compensação).**

Para responderem às questões posteriores à exploração das três imagens, os alunos podem usar diferentes estratégias, que explicitamos em seguida.

Na resposta à questão - **Se comprar 3 sacos, quantos pães-de-leite compro?** os alunos podem recorrer ao conhecimento que 5+5+5 são 15 ou que 10 + 5 são 15.
Números naturais, Adição e subtração e Regularidades

Para saberem quantos pães-de-leite sobraram, depois de se terem comido 12, tendo 3 sacos, podem surgir as seguintes estratégias:

- **Efectuar contagens progressivas** – 13, 14, 15, sobram 3;
- **Efectuar contagens regressivas** – 15, 14, 13, sobram 3;
- **Recorrer à decomposição do 15**, dizendo: são 3 porque 12+3 são 15 ou 10+2+3 são 15 ou 5+5+2+3 são 15.

Calcular o número de sacos necessários para 19 crianças, leva à necessidade de se pensar no número de sacos com um total de 20 pães-de-leite, ou seja, pensar no número 20 estruturado em grupos de 5 ou de 10 (dois sacos). O número de sacos pode ser obtido, fazendo:

- **19 é o mesmo que 5+5+5+4**
 5 crianças ------- 5 pães-de-leite ------- 1 saco
 5 crianças ------- 5 pães-de-leite ------- 1 saco
 5 crianças ------- 5 pães-de-leite ------- 1 saco
 4 crianças ------- 4 pães-de-leite ------- 1 saco e sobra 1 pão

- **19 é o mesmo que 10+5+4**
 10 crianças ------- 10 pães-de-leite ------- 2 sacos
 5 crianças ------- 5 pães-de-leite ------- 1 saco
 4 crianças ------- 4 pães-de-leite ------- 1 saco e sobra 1 pão

A primeira estratégia usa a estrutura do 5 e a segunda recorre, simultaneamente, à estrutura do 10 e do 5.

Este último problema pode ser, também, encarado como um problema de divisão ao qual está associado o sentido de medida. Na prática pretende-se saber quantos sacos (cada um com cinco pães-de-leite) precisamos para colocar 19 pães-de-leite. Neste caso, uma das estratégias esperadas é o recurso a subtrações sucessivas (19 – 5 = 14; 14 – 5 = 9; 9 – 5 = 4), tendo em conta os números envolvidos e o facto de esta tarefa ser proposta para o 1.º período do 1.º ano de escolaridade. A outra estratégia previsível, encarando o problema como sendo de divisão, é o recurso a adições sucessivas (5 + 5 = 10; 10 + 5 = 15; 15 + 4 = 19). Encarando o problema como sendo de divisão por medida, os alunos devem compreender que no quarto saco só se colocam 4 pães-de-leite e não 5.
DO COLAR DE CONTAS PARA A RECTA

14
8
19
17
DO COLAR DE CONTAS PARA A RECTA

Quem tem razão?

Posiciona na recta os números 6, 11 e 16.
Tarefa 2 – Do colar de contas para a recta

Materiais

- Fotocópia das folhas da tarefa

Ideias disponíveis e em desenvolvimento

- Realizar contagens progressivas, representando os números envolvidos

Ideias e procedimentos a desenvolver

- Representar números na recta numérica
- Resolver problemas envolvendo relações numéricas

Sugestões para exploração

Com esta tarefa pretende-se que os alunos localizem e posicionem números até 20 na recta numérica.

A primeira situação tem como objectivo ajudar os alunos a identificar os números de referência (5,10 e 15) na recta a partir da estrutura do colar de contas.

Na segunda situação pretende-se que os alunos posicionem os números 8, 14, 17 e 19, associando-os às setas assinaladas e apoiando-se nas marcas que correspondem aos números de referência. Note-se que, neste caso, já só foi representado o 10 como número de referência, mantendo-se as marcas dos restantes para que os alunos continuem a poder associar facilmente a localização do 5 e do 15, apesar de estes não estarem lá representados. Nesta fase, a representação do número 10 na recta auxilia os alunos a identificar a localização dos números inferiores e superiores a 10 e a apercebem-se que o 10 “divide” este segmento de recta em duas partes iguais.

Na terceira situação a ideia não é que os alunos identifiquem com precisão o número assinalado pela seta, mas sim, desencadear uma discussão associada ao número que poderá corresponder a essa localização e à justificação dada pelos alunos para essa correspondência.
Na quarta e última situação pretende-se que o aluno posicione na recta os números 6, 11 e 16. Mais uma vez não se pretende que o posicionamento destes números seja realizado com grande precisão. Contudo, espera-se que os alunos consigam perceber a posição relativa dos números e os posicionem, tendo por base a ideia visual das zonas que são separadas pelos números de referência 5, 10 e 15.

Sugere-se que as questões associadas às diferentes situações desta tarefa sejam propostas separadamente e individualmente, seguidas de discussão em grande grupo. Durante estes momentos é importante que o(a) professor(a) incentive os alunos a explicarem o modo como pensaram.

Possíveis caminhos a seguir pelos alunos

Na resolução da primeira situação, os alunos podem apoiar-se no conhecimento que têm da estrutura do colar de contas (grupos de 5). Para identificarem o número da primeira marca, 5, basta pensarem no número de contas do primeiro grupo de contas. Na segunda marca colocam o número 10, justificando que 5+5 são 10. Na terceira marca colocam o número 15, justificando que 5+5+5 são 15, ou que 10+5 são 15.

Na segunda situação, para posicionarem o número 14, os alunos podem pensar que este número fica antes do 15, mas próximo do mesmo. Para colocarem o número 19 é previsível que apresentem o mesmo tipo de raciocínio, agora em relação ao 20. É natural que os alunos mostrem facilidade no posicionamento destes dois números por serem números que se encontram “muito” perto de números de referência. Também se espera que o posicionamento do número 8 não constitua uma grande dificuldade dado ser o único número apresentado inferior a 10. Para posicionarem o número 17, os alunos podem pensar que 17 é menor que 19 e é superior a 15.

O objectivo da terceira situação é suscitar a discussão sobre o número que se situa nesta marca. Como já foi referido anteriormente não se pretende determinar com exactidão esse número, mas sim levar os alunos a perceberem que, se a seta está ligeiramente “desviada” para a direita em relação ao ponto médio do segmento, terá de ser um número maior que 10, mas perto de 10. Assim a proposta da Ana deve ser refutada pelos alunos por ser um número inferior a 10.

Na última situação os alunos devem posicionar os números 6, 11 e 16. A escolha destes números resulta, não só do facto de ainda não terem sido usados nas questões anteriores, mas também por serem números que se “situam perto” dos números de referência. Espera-se que os alunos, neste momento, consigam ter uma ideia visual das zonas que delimitadas por estes
números, utilizando a ideia que o 10 divide o segmento de recta entre 0 e 20 em duas zonas iguais e que o 5 e o 15 dividem também em partes iguais os segmentos de recta entre 0 e 10 e entre 10 e 20, respectivamente. Assim, os alunos podem pensar/justificar que:

- O 6 se posiciona antes do 10 e muito perto do 5 pois sabem que 6 é 5+1, ou que a seguir ao 5 é o 6;
- O 11 situa-se perto do 10 mas é maior que 10, pois sabem que 11 é 10+1 ou ainda que a seguir ao 10 é o 11;
- O 16 é maior que 15 e menor que 20, ou seja, é maior que 10 mas fica mais perto do 20, ou muito perto do 15 (pois sabem que 16 é 15+1 ou que 16 é 10+6 ou, ainda, que a seguir ao 15 é o 16).

É importante salientar que, em situações como esta, em que se apresenta uma recta quase vazia (sem outras marcas para além do 0 e do 20), com o objectivo de posicionar números, alguns alunos tendem a fazer marcas contando um a um a partir do zero, sem atender aos limites do segmento de recta assinalados, tal como mostra a seguinte figura:

![Diagrama de números naturais](image)

Nestes casos, o(a) professor(a) não deve incentivar este tipo de procedimento, sugerindo aos alunos que observem as “rectas” das duas primeiras situações onde aparecem marcados números de referência.
VAMOS REGISTRAR AS PRESENÇAS!

<table>
<thead>
<tr>
<th>Dia</th>
<th>Fevereiro</th>
<th>Março</th>
<th>Abril</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P F</td>
<td>P F</td>
<td>P F</td>
</tr>
<tr>
<td>1</td>
<td>21 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>24 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Extensão - Os meninos que estão nas salas da Carina e da Ana

Repara como Carina representou o número total de alunos que estão na sua sala:

Ana representou o número de alunos que há na sua sala assim:

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
</tbody>
</table>

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
</tbody>
</table>

Com esta informação, que questões podes colocar? E quais seriam as tuas respostas?
Tarefa 3 – Vamos registar as presenças!

Materiais

- Fotocópia das folhas da tarefa
- As figuras que representam cada aluno ou molas da roupa de duas cores e cordel para o registo das presenças diárias na sala de aula
- Cartolina, em que é registada uma tabela semelhante à proposta na página de apresentação da tarefa Os meninos que estão nas salas de Carina e Ana, para afixar na sala com o registo de presenças

Ideias disponíveis e em desenvolvimento

- Resolver problemas envolvendo adições e subtracções
- Compor e decompor números até 20
- Adicionar e subtrair até 10 privilegiando o uso da decomposição em que um dos termos é 5 ou em que as duas parcelas são iguais (dobo)

Ideias e procedimentos a desenvolver

- Compreender e memorizar factos básicos da adição e relacioná-los com os da subtração
- Compreender a subtração no sentido completar e comparar
- Adicionar e subtrair até 30 privilegiando o uso da decomposição em que um dos termos é 5 e/ou 10

Sugestões para exploração

A marcação de presenças na sala de aula é uma actividade que é habitualmente realizada no 1.º Ciclo e que é proposta nesta tarefa. No entanto, sublinha-se que o modo como ela é aqui descrita, envolve intencionalidades específicas que ultrapassam a simples determinação do número de alunos presentes (e ausentes) diariamente.
Nesta tarefa, como objectivo fundamental, pretende-se que os alunos interiorizem a formação de grupos de 10, organizados em dois grupos de 5 e que usem esta organização para adicionar e subtrair.

No sentido de ir favorecendo a estruturação dos números em grupos de 5 e de 10, devem ser colocados três cordéis na sala, de modo a caber, em cada um, 10 cartões. Os cartões podem ser substituídos por molas da roupa de duas cores (cada mola da roupa representa um aluno).

Esta actividade deve ser introduzida gradualmente, sendo de prever três fases. Na sua descrição, parte-se do princípio que a turma tem 24 alunos, o que requer dois cordéis “cheios” e um terceiro com 4 cartões. No caso de a turma ter menos de 20 alunos é preciso fazer uma pequena adaptação na segunda fase, pois não é necessário chegar até à contagem de 10 em 10.

1.ª Fase

Na aula em que se introduz esta maneira de registar as presenças dos alunos, o(a) professor(a) entrega um cartão (ou uma mola da roupa) a cada aluno. Em seguida, mostra as cordas e pede que, ordenadamente, cada aluno coloque numa corda o cartão ou a mola da roupa que assinala a sua presença na aula. Depois, pode pedir que indiquem o número total de alunos presentes, deixando que as crianças o façam livremente. É previsível que a maioria dos alunos baseie a sua resposta na contagem, um a um, dos cartões e que nem todos cheguem ao mesmo valor. Neste caso, o(a) professor(a) deve solicitar a dois alunos que chegaram a valores diferentes que expliquem como o fizeram, criando assim uma oportunidade para que estes explicitem como “viram” o número de presenças e possam corrigir eventuais erros que cometeram. Depois de haver um acordo sobre o número total de alunos presentes, esse valor deve ser registado na cartolina. Coloca-se, em seguida, a questão do número de alunos que faltam que, em princípio, é facilmente resolvida recorrendo à memória das crianças: hoje falta a Marta e o Luís Pedro.

Na segunda aula e seguintes, deve ser escolhido um aluno a quem se pede para actualizar a representação das presenças nos cordéis, tendo em conta o número de crianças que estão na sala nesse dia. Depois de todos terem confirmado que essa representação está correcta, são registados, na cartolina afixada na sala, o número de alunos presentes e o número dos faltaram nesse dia.
2.ª Fase

Após se proceder, durante algum tempo, como descrito anteriormente, inicia-se uma fase em que o(a) professor(a) procura que os alunos sintam a “vantagem” de considerar os grupos de 10. Assim, se houver mais do que 20 alunos presentes, as crianças devem interiorizar que, em cada cordel “cabem” 10 presenças conseguindo, por exemplo, verbalizar as suas respostas deste modo:

10, mais 10, 20, 21, 22. Hoje estão 22 alunos.

Note-se que, antes disto, muitos alunos têm necessidade de contar repetidas vezes todos os elementos e de passar pela fase intermédia de contar de 1 em 1 a partir do 10 (primeiro cordel) – 10, 11, 12, ..., 19, 20, 21, 22.

3.ª Fase

Aproveitando, por exemplo, um dia em que está na sala um número de alunos inferior a 20, o(a) professor(a) deve mostrar a vantagem de organizar grupos de 5.

Considere-se, por exemplo, que naquele dia se obtinha a seguinte representação:

A partir dela, pode ser suscitada a procura de uma organização dos cartões que facilite a contagem, surgindo assim a proposta:

Esta organização deve passar a ser usada, incentivando os alunos a indicar o número de alunos presentes com base nela.
Possíveis caminhos a seguir pelos alunos

Na fase inicial, embora ainda muitos alunos possam contar de 1 em 1, outros já começam a formar grupos, tendo em conta a representação que observam. Exemplifica-se com um número de presenças igual a 18:

Filipe: 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18.

Marta: 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 17, 18.

Carina: 10, 11, 12, 13, 14, 15, 16, 17, 18.

É importante que o(a) professor(a) peça a alguns alunos para explicarem como pensaram, pois é percebendo como outras crianças vêem cada representação, que cada um vai progredindo. É o que acontece, por exemplo, quando Filipe percebe que Marta viu dois grupos de 2 e que, por isso, pôde passar do 10 para o 12 e depois para o 14. Também, quando Carina explica que, como sabe que em cada corda “cheia” há 10, lhe basta acrescentar a 10 os cartões da corda que não está “cheia”, Marta e Filipe podem começar a perceber que será vantajoso passar a fazer como Carina. No entanto, este tipo de evolução não é imediato e muitos alunos persistem durante algum tempo no uso de uma determinada forma de contar, mesmo que seja mais lenta.

Progressivamente, os alunos vão estabelecendo relações e adicionando e subtraindo mentalmente, sem contar. No caso de haver 22 presenças, os alunos podem pensar dos seguintes modos:

Filipe: 10 mais 10 são 20. Mais 2, 22.

Marta: 20 mais 2. 22

Carina: Estamos ... 22. Hoje faltam 2.

Depois de os alunos terem realizado a tarefa de marcação das presenças durante algum tempo, começa a ser cada vez mais usada a relação entre o número total de alunos da turma, e o número de faltas e presenças. Esta relação envolve o sentido completar da subtração.

As potencialidades desta tarefa são integralmente exploradas quando os alunos conseguem estruturar as adições com base em grupos de 5 e 10 e subtrair relacionando o número de presenças, o número de faltas e o número total de alunos da turma.
Extensão

Propor a tarefa Os meninos que estão nas salas de Carina e Ana ou usar a ideia base que nela se apresenta, a partir dos dados relativos aos registos do número de alunos que estão presentes, em dias diferentes, na sala de aula.

Para a exploração desta tarefa o(a) professor(a) pode começar por registar as questões que os alunos colocam depois de observar a folha da tarefa respectiva. Não é previsível que, numa primeira fase, surjam perguntas muito diferentes das seguintes:

★ Quantos alunos há na sala da Carina?
★ Quantos alunos há na sala da Ana?

Depois de cada aluno ter respondido a cada uma destas questões, deve dar-se tempo para que surjam outras, não tão imediatas.

A questão sobre a comparação do número de alunos das duas salas, que envolve o sentido comparar da subtração, pode ser proposta por alguns alunos ou, caso tal não aconteça, pelo(a) professor(a):

★ Qual das salas tem mais alunos? E quantos alunos tem a mais?

Posteriormente, o(a) professor(a) pode desafiar os alunos a formular questões menos “evidentes”, apresentando uma que ainda não tenha surgido. Finalmente, pode ainda solicitar-lhes que, em casa, pensem numa outra questão, a apresentem e justifiquem a sua resposta para ela.

Por exemplo, o(a) professor(a) pode também propor situações como as que se apresentam a seguir, que envolvem a subtração no sentido de completar e a representação de um número usando as molduras do 10.

- Na segunda-feira passada Ana e Carina notaram que:
 - **Ana**: Hoje não faltou ninguém na minha sala.
 - **Carina**: O número de meninos que estão hoje na minha sala é igual ao número de meninos que estão na tua.

★ Quantos alunos faltaram na sala da Carina?
★ Carina quer usar a moldura do 10 para representar o número de alunos que há na sua sala. Como é que o pode fazer?
Pacotes de leite

Pacotes de leite bebidos pelos alunos da turma A numa semana

<table>
<thead>
<tr>
<th>Número de pacotes de leite</th>
<th>2.ª</th>
<th>3.ª</th>
<th>4.ª</th>
<th>5.ª</th>
<th>6.ª</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dias da Semana</th>
<th>2.ª</th>
<th>3.ª</th>
<th>4.ª</th>
<th>5.ª</th>
<th>6.ª</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Números e operações – 1.º Ano – SEQUÊNCIA 2

Número de pacotes de leite

<table>
<thead>
<tr>
<th></th>
<th>2.ª</th>
<th>3.ª</th>
<th>4.ª</th>
<th>5.ª</th>
<th>6.ª</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dias da Semana

2.ª 3.ª 4.ª 5.ª 6.ª
Tarefa 4 - Pacotes de leite

Materiais

- Fotocópia das folhas da tarefa com o gráfico de pontos

Ideias disponíveis e em desenvolvimento

- Compor e decompor números
- Compreender e memorizar factos básicos da adição e relacioná-los com os da subtração
- Resolver problemas envolvendo adições e subtrações
- Compreender a adição nos sentidos combinar e acrescentar

Ideias e procedimentos a desenvolver

- Compreender a subtração no sentido retirar e completar
- Ler, explorar e interpretar informação (apresentada em gráficos de pontos) respondendo a questões e formulando novas questões

Sugestões para exploração

Esta tarefa permite estabelecer conexões entre dois temas da Matemática, o tema *Número* e operações e o tema *Organização e tratamento de dados*. Surge relacionada com uma situação de análise de um gráfico de pontos, que conduz a contagens, ao estabelecimento de relações numéricas e à resolução de problemas que envolvem diferentes sentidos das operações adição e subtração.

Apesar de um gráfico de pontos, habitualmente, não incluir a representação de segmentos horizontais que nos dão a indicação das quantidades, com alunos do início do 1.º ano estas marcações revelam-se particularmente úteis na leitura das quantidades de pacotes de leite bebidos em cada dia da semana e no estabelecimento de relações numéricas. Na verdade, estes segmentos

Nota: Este objectivo é do tema Organização e tratamento de dados, do tópico Representação e interpretação de dados.
dividem espaços com 5 quadrículas em altura, incentivando a estruturação dos números (neste caso até 20), em grupos de 5 e de 10. Note-se que esta é também a estrutura do fio de contas, material no qual os alunos têm apoiado os seus cálculos até esta fase.

É habitual, em muitas salas do 1.º ciclo, efectuar-se o levantamento do número de crianças que bebe leite em cada dia. O gráfico de pontos apresentado diz respeito, precisamente, ao registo do número de pacotes de leite bebidos pelos alunos de uma turma durante os vários dias de uma semana.

Normalmente as turmas são formadas por 24 alunos, contudo a experiência mostra que, por razões variadas, o número de pacotes de leite bebidos pelos alunos num dia é inferior a esse número. Por este motivo, optámos por colocar apenas a possibilidade da representação do consumo diário de leite até 20. Os dados representados no gráfico são fictícios e, neste caso, foram pensados de modo a dar exemplos de situações numéricas interestantes para serem exploradas com os alunos. Por exemplo, no gráfico que aqui apresentamos podemos verificar que o número total de pacotes de leite consumidos à 2.ª feira e à 6.ª feira é igual ao que foi consumido na 4.ª feira. Assim, na 6.ª feira beberam-se menos 12 pacotes que na 4.ª feira e na 2.ª feira beberam-se menos 8 pacotes que na 4.ª feira. O(A) professor(a) pode desafiar os alunos a verificar este tipo de relações, concluindo que se 12+8=20, então 20–12=8 e 20–8=12.

Inicialmente, o(a) professor(a) deve incentivar as crianças a colocar questões que lhes são sugeridas por esta representação. Questões do tipo: *Qual o dia em que se bebeu menos leite escolar? E mais?*, são questões que se prevêem que surjam naturalmente. Outra das questões que é provável que os alunos coloquem é *Quantos pacotes de leite se beberam durante a semana toda?* Embora a procura de resposta a esta questão envolva lidar com quantidades superiores a 20, o seu cálculo pode ser realizado de forma simples como exemplificamos na secção seguinte. De qualquer modo, esta questão não deve ser das primeiras a ser explorada.

Outras questões, que podem emergir espontaneamente, são as que se referem ao número de pacotes de leite bebidos em cada um dos dias da semana. O(A) professor(a) deve organizá-las de modo a sugerir o cálculo do número de pacotes de leite de dias em que as duas quantidades perfazem 20 pacotes. Podem, assim, ser apresentadas questões do tipo:

- *Quantos pacotes de leite se beberam na 2.ª feira? E na 6.ª feira? Quantos pacotes de leite se beberam nestes dois dias juntos?*

- *Quantos pacotes de leite se beberam na 3.ª feira? E na 5.ª feira? Quantos pacotes de leite se beberam nestes dois dias juntos?*
Neste conjunto de questões está subjacente o uso da operação adição no sentido combinar, dado que se juntam duas ou mais quantidades (neste caso, correspondentes ao número de pacotes de leite bebidos em cada dia).

Podem ser colocadas, também, questões do tipo:

- **Como já vimos, na 2.ª feira beberam-se 12 pacotes de leite. Quantos pacotes de leite se beberam hoje na nossa turma, sabendo que foram 3 a mais?**

A este problema de adição está associado o sentido acrescentar, dado que nesta situação os alunos têm uma quantidade à partida, à qual terão de acrescentar uma outra quantidade.

Por fim, o(a) professor(a) pode, ainda, colocar as seguintes questões:

- **Quantos pacotes de leite se beberam a mais na 4.ª feira do que na 2.ª feira? E do que na 5.ª feira?**

Estas últimas questões revelam situações de subtracção às quais está associado o sentido completar, dado que o aluno é, naturalmente, conduzido a pensar na quantidade de pacotes de leite que tem de juntar aos pacotes de 2.ª feira e 5.ª feira, respectivamente, para perfazer o número de pacotes bebidos na 4.ª feira.

Considerando o ano de escolaridade a que se destina e a altura do ano lectivo que se indica para a realização desta tarefa, as questões devem ser discutidas uma a uma, solicitando o(a) professor(a) aos alunos para explicarem como pensaram. É a partir da verbalização dos raciocínios dos alunos que devem ser sistematizadas algumas relações numéricas.

Construção de um gráfico de pontos com os alunos

Caso o(a) professor(a) pretenda, pode também construir um gráfico de pontos com os seus alunos utilizando dados reais. Recorrendo a uma folha de registo como a apresentada na folha da tarefa, ou a papel de cenário com a mesma representação, os alunos registam diariamente o número de pacotes de leite que são bebidos na sua sala, assinalando com uma cruz na coluna correspondente ao dia da semana. O resultado será um gráfico de pontos semelhante ao apresentado no início desta tarefa.

Na semana seguinte, depois do gráfico construído, o(a) professor(a) desafia as crianças a colocar questões que lhes são sugeridas pela observação do gráfico e a explorá-lo tendo em conta as possíveis relações numéricas estabelecidas. É de salientar que, a construção de um gráfico de pontos a partir de dados reais, pode não incluir números que sejam facilmente relacionáveis em termos
de cálculo. Contudo, o(a) professor(a) deve estar atento aos dados de modo a explorar as suas potencialidades do ponto de vista numérico.

Possíveis caminhos a seguir pelos alunos

Nas questões *Qual o dia em que se bebeu menos leite escolar? E mais?* os alunos não necessitam de efectuar contagens, bastando comparar a altura das colunas assinaladas. Podem também calcular o número de pacotes bebidos em cada um destes dias recorrendo à estrutura do gráfico:

- **O dia em que se beberam menos pacotes de leite foi na 3.ª feira. Beberam-se 6 pacotes porque 5 + 1 = 6.**

- **O dia em que se beberam mais pacotes de leite foi na 4.ª feira. Para calcular o número de pacotes de leite bebidos os alunos podem apoiar-se nas marcações do gráfico, dizendo: são 20 porque são 5 + 5 + 5 + 5, ou porque são 10 + 10, ou porque são 15 + 5.**

- **Quantos pacotes de leite se beberam na 2.ª feira? E na 6.ª feira?**

Para determinarem o número de pacotes de leite bebidos na 2.ª feira os alunos podem afirmar que são 12, porque 5 + 5 + 2 = 12 ou 10 + 2 = 12, apoiando-se na estrutura oferecida pelo gráfico. Do mesmo modo concluem que, na 6.ª feira, foram bebidos 8 pacotes, porque 5 + 3 = 8.

- **Quantos pacotes de leite se beberam nestes dois dias juntos?**

Para calcularem o número total de pacotes bebidos na 2.ª e 6.ª feira, os alunos estão novamente perante um problema de adição no sentido de combinar. Para determinarem 12 + 8 podem apoiar-se no gráfico e aperceber-se que o conjunto de cruzes correspondentes aos dois dias perfaz a quantidade 20, pelo que 12 + 8 é igual a 20.

- **Quantos pacotes de leite se beberam na 3.ª feira? E na 5.ª feira?**

Para determinarem o número de pacotes de leite bebidos na 3.ª feira os alunos podem afirmar que são 6, porque 5 + 1 = 6, observando o gráfico e a estrutura subjacente. Do mesmo modo, concluem que, na 5.ª feira, foram bebidos 14 pacotes porque 10 + 4 = 14 ou porque 15 – 1 = 14.

- **Quantos pacotes de leite se beberam nestes dois dias juntos?**

Para determinarem o número total de pacotes de leite bebidos na 3.ª e 5.ª feira, ou seja, 6 + 14 os alunos podem recorrer ao gráfico e aperceber-se que o conjunto de cruzes correspondentes aos dois dias, colocadas numa mesma coluna perfaz a quantidade 20, pelo que 6 + 14 é igual a 20. Podem ainda...
utilizar as decomposições anteriores, ou seja, chegar a 20 via 5 + 1 + 10 + 4. Este cálculo pode ser facilitado, efectuando primeiro 1+4.

* Quantos pacotes de leite se beberam durante a semana toda?

Este pode ser o momento adequado para tirar conclusões sobre o número de pacotes de leite que foram bebidos na semana toda. Repare-se que os alunos já associaram as quantidades de pacotes de leite de 2.ª feira e 6.ª feira e de 3.ª feira e 5.ª feira, concluindo que, em cada um destes dois pares de dias, foram bebidos 20 pacotes de leite. Assim, o número 60 pode surgir a partir de 20+20+20. Caso não estabeleçam estas relações e optem por determinar o número de pacotes de leite directamente, a partir dos pontos do gráfico, os alunosdevem apoiar-se na estrutura do mesmo, fazendo a contagem por grupos, como se ilustra:
Na 2.ª feira da semana passada beberam-se 12 pacotes de leite. Quantos pacotes de leite se beberam hoje, na nossa turma, sabendo que foram 3 a mais?

Nesta questão o(a) professor(a) introduz um dado novo relativamente aos que foram analisados até este momento. A ideia é que os alunos acrescentem à quantidade 12, a quantidade 3. Prevê-se que grande parte dos alunos consigam, nesta fase, dizer que são 15, uma vez que já automatizaram o cálculo aditivo até 20. Contudo, o gráfico oferece a possibilidade de os alunos contarem a partir do 12, fazendo: 13, 14, 15, são 15.

Quantos pacotes de leite se beberam a mais na 4.ª feira do que na 2.ª feira? E do que na 5.ª feira?

Como já foi referido, este é um problema de subtracção a que está associado o sentido completar. Simbolicamente, corresponde a resolver a seguinte situação:

\[12 + ___ = 20 \]

A ideia é que os alunos, partindo da quantidade de pacotes de leite bebidos na 2.ª feira, ‘cheguem’ à quantidade de pacotes de leite bebidos na 4.ª feira.
Como os alunos já relacionaram as colunas de 2.ª feira e de 6.ª feira, podem, mentalmente, justapor os dois conjuntos de cruzes correspondentes a estes dois dias e concluir que são 8, porque 12 + 8 são 20.

Do mesmo modo determinam o número de pacotes de leite que foram bebidos a mais na 4.ª feira do que na 5.ª feira, o que corresponde a resolver a seguinte situação:

\[14 + __ = 20\]

Da mesma maneira, como também já relacionaram as colunas de 3.ª feira e de 5.ª feira, podem, mentalmente, justapor os dois conjuntos de cruzes correspondentes e concluem que são 6 porque 14 + 6 são 20.

Em todas as questões apresentadas anteriormente, pode acontecer que os alunos recorram à contagem um a um, mas esta estratégia não deve ser incentivada pelo(a) professor(a).
QUEM FAZ ANOS ESTE MÊS?

<table>
<thead>
<tr>
<th>S</th>
<th>T</th>
<th>Q</th>
<th>Q</th>
<th>S</th>
<th>S</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alunos</th>
<th>Dia do aniversário</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tarefa 5 – Quem faz anos este mês?

Materiais

- O calendário do mês em que se faz a exploração desta tarefa, registado em papel de cenário. Pode-se, em alternativa, usar uma imagem projectada da folha da tarefa da página anterior, que deve ser também fotocopiada e distribuída aos alunos.

Ideias disponíveis e em desenvolvimento

- Uso dos termos antes, depois, mais cedo e mais tarde
- Resolver problemas envolvendo relações numéricas

Ideias e procedimentos a desenvolver

- Investigar regularidades numéricas
- Relacionar entre si dia, semana e mês
- Resolver problemas envolvendo situações temporais
- Formular problemas/questões

Sugestões para exploração

O título desta tarefa – Quem faz anos este mês? – sugere o seu foco inicial de exploração. No entanto, propõem-se igualmente outros focos de problematização que podem ser analisados em diferentes dias de trabalho, e que aqui são organizados em três fases. As fases 1 e 2 podem ser realizadas mais do que uma vez, em diferentes meses do ano. A exploração do que se propõe na terceira fase só deve ocorrer depois de os alunos terem explorado algumas regularidades numéricas e estarem familiarizados com os aspectos abordados nas duas fases anteriores.

14 Este objectivo é do tema Geometria e Medida, do tópico Tempo.
15 Este objectivo é do tema Geometria e Medida, do tópico Tempo.
1.ª Fase – Quem faz anos este mês? (15 minutos)

A questão anterior é uma das que muitos professores colocam aos seus alunos e que origina a organização de diferentes tipos de registo. A par deste aspecto, propomos igualmente que se colocuem questões que incluam a exploração de regularidades, embora a um nível ainda muito elementar.

De forma a concretizar as sugestões de exploração desta tarefa, vamos partir do princípio que na turma há três crianças que festejam o aniversário nesse mês: Raquel que faz anos no dia 3, Paulo que faz anos no dia 11 e, finalmente, Hélder que festeja o seu aniversário no dia 24. Embora pouco provável, pode acontecer que a distribuição dos aniversários dos alunos esteja bem equilibrada pelos vários meses, limitando os desafios que podem ser colocados. Neste caso, pode-se recorrer a um grupo maior de pessoas, incluindo, por exemplo, os aniversários dos irmãos dos alunos da turma.

Depois de assinalar na folha do calendário os dias 3, 11 e 24 e de notar que Raquel faz anos num domingo, Paulo numa segunda-feira e Hélder num domingo, o(a) professor(a) pode colocar as seguintes questões:

1. Quem faz anos mais cedo? E mais tarde?
2. Paulo faz anos, quantos dias antes de Hélder? E quantos dias depois de Raquel?
3. Se Raquel tivesse nascido um dia mais tarde, faria anos em que dia da semana?
4. Quantos dias mais cedo (o menor número possível) teria de ter nascido Paulo para que festejasse os anos no mesmo dia da semana que Hélder?

Todas estas questões têm como objectivo conseguir que os alunos saibam “ler” o calendário, relacionando o dia do mês com o dia da semana e consolidar o significado de termos como “antes”, “depois”, “mais cedo”, “mais tarde”. Nesta primeira fase, sobretudo no caso de ser a primeira vez que se propõe uma exploração do calendário que vai além da leitura directa de registo, é natural que os alunos respondam às questões 2 e 4, apontando as datas e contando 1 a 1.

Nesta fase não é determinante procurar que os alunos usem estratégias mais potentes, pois isso será focado nas fases seguintes. É, no entanto, importante que esta fase seja explorada com ritmo e que não se ocupe demasiado tempo solicitando diferentes justificações para a mesma resposta ou respostas muito elaboradas. Por exemplo, tendo em conta os objectivos das questões 2 e 4, basta que os alunos sejam capazes de apresentar respostas e justificações como as seguintes:

Joana Brocardo, Catarina Delgado e Fátima Mendes 83
Comecei no Hélder e depois contei 1 (aponta o dia 23), 2 (aponta o dia 22), 3 (aponta o dia 21), ..., 13 e pára-se, pois aqui faz anos o Paulo.

O Paulo faz anos na segunda-feira. Andei 1 dia e calhou no domingo. É 1 dia.

2.ª Fase – Outros aniversários neste mês (20 minutos)

Nesta fase pretende-se que os alunos comeiem a perceber regularidades que podem ser exploradas no calendário desse mês e a saber usá-las.

O(a) professor(a) pode, por exemplo, dizer que, nesse mês, conhece duas pessoas que fazem anos em dias diferentes entre si e dos alunos da turma, mas que o seu dia de anos calha precisamente num domingo. Depois da constatação que essas pessoas fazem anos, uma num dia 10 e outra num dia 17, deve analisar-se a sequência das datas que correspondem a domingos – 3, 10, 17, 24 – percebendo que se pode passar de um termo para o seguinte adicionando 7 (número de dias que tem uma semana). Ainda com o calendário do mês visível, podem pedir-se as datas do mês que correspondem a fazer anos numa segunda-feira (4, 11, 18 e 25) e num sábado (2, 9, 16, 23 e 30), tentando, também, perceber porque é que neste mês há 4 domingos, 4 segundas-feiras e 5 sábados.

Finalmente, sem que os alunos possam olhar para o calendário – as suas fichas devem estar viradas ao contrário e o poster/imagem projectada não deve estar visível – são colocadas questões como:

- *Este mês, quem faz anos no dia 1, festeja o aniversário numa sexta-feira. Será que os que fazem anos no dia 16 também o festejam no mesmo dia da semana? Quais são as datas das outras sextas-feiras?*

- *Um meu amigo faz anos na quarta-feira, dia 27. Em que datas podem fazer anos as pessoas que, como este meu amigo, festejam este ano o seu aniversário numa quarta-feira?*

De modo a manter um ritmo de trabalho intenso e estimulante, propõe-se que a exploração de todas as questões desta fase seja feita em grande grupo. O(a) professor(a) coloca as questões e dá algum tempo para os alunos pensarem e registarem as suas respostas no caderno. Depois de a maioria dos alunos ter conseguido responder no caderno, o(a) professor(a) solicita que um deles explique o procedimento que usou, e regista-o no quadro. Se necessário, pode também validar outras formas de pensar. Note-se, no entanto, que o objectivo não é explicitar todos os procedimentos diferentes usados para responder a uma mesma questão, e que a diversidade de procedimentos pode ir sendo analisada/percebida, à medida que vão sendo registadas no quadro as respostas às várias questões.
Esta fase pode terminar com o desafio de os alunos pensarem, em casa, numa questão a ser colocada no contexto das pessoas que fazem anos nesse mês.

3.ª Fase – Aniversários noutros meses (30 minutos)

Nesta fase deixa-se de pensar num mês em particular, passando a pensar-se num mês qualquer. Decorrentes da exploração feita anteriormente, podem ser colocadas questões como as seguintes:

- Faço anos no dia 12. Este ano o dia dos meus anos vai ser numa quarta-feira mas só vou festejar no sábado seguinte. Em que dia festejo os meus anos?

- Há quatro domingos no mês em que Raquel, Hélder e Paulo fazem anos. Haverá sempre quatro domingos em todos os outros meses? Porquê? Será possível haver seis domingos num mês?

Depois de os alunos terem interiorizado bem as relações e regularidades identificadas anteriormente, podem ser registadas no quadro ou projectadas imagens de pequenas partes do calendário que os alunos devem completar.

Inicialmente, pode propor-se a análise das datas em que fazem anos todas as pessoas que festejam o seu aniversário num determinado dia da semana, em determinado mês. Para isso, o(a) professor(a) sugere o preenchimento de tabelas como as seguintes:

<table>
<thead>
<tr>
<th>Quinta-feira</th>
<th>Sexta-feira</th>
<th>Segunda-feira</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td></td>
</tr>
</tbody>
</table>

Depois, podem ser colocadas outras questões, como a seguinte, adaptadas às situações decorrentes dos dias de aniversário das crianças e também dos seus irmãos, ou de outro conjunto de pessoas que o(a) professor(a) considere adequado explorar:

- O Paulo e o seu irmão mais novo fazem anos no mesmo mês, com 5 dias de diferença. Em que dias pode fazer anos o irmão do Paulo? E se eu vos disser que o irmão do Paulo faz anos depois dele? Em que dia do mês e da semana faz anos?
Finalmente, pode propor-se o preenchimento de tabelas que envolvem a integração da sequência horizontal e vertical do calendário:

<table>
<thead>
<tr>
<th>S</th>
<th>T</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Possíveis caminhos a seguir pelos alunos

É natural que, enquanto os alunos têm o calendário de um determinado mês visível, respondam às questões que lhes são colocadas a partir da sua análise directa. Assim, as suas respostas podem basear-se na interpretação do calendário do mês (como está organizado, qual é a coluna a que corresponde determinado dia da semana e o que corresponde a cada linha) e numa leitura directa que envolve uma contagem 1 a 1. Tal como referido anteriormente, é natural que os procedimentos usados pelos alunos na primeira fase tenham estas características. Também, na primeira parte da segunda fase, é previsível que isso aconteça, como se ilustra a propósito de um modo possível de responder à questão sobre os aniversariantes que fazem anos numa segunda-feira (4, 11, 18 e 25):

* Dia 4 é segunda-feira. Os outros números que estão por baixo são as outras segundas-feiras. São os dias 11, 18 e 25.

Este tipo de resposta envolve perceber a disposição do calendário, compreendendo que em cada coluna estão as datas que correspondem ao mesmo dia da semana. A constatação de que, de uma segunda-feira para a seguinte, se adiciona 7, pode ser suportada por uma contagem 1 a 1, como se ilustra a propósito de determinar a diferença de dias que vão entre a segunda-feira, dia 4 e a segunda-feira seguinte:

* 1 (aponta para dia 5), 2 (aponta para dia 6), 3 (aponta para dia 7), 4 (aponta para dia 8), 5 (aponta para dia 9), 6 (aponta para dia 10), 7 (aponta para dia 11).

Para responder às questões colocadas sem que esteja visível o calendário, os alunos têm de usar o conhecimento das regularidades compreendidas anteriormente. Este conhecimento pode ser operacionalizado com diferentes
níveis de abstracção, pois é natural que os alunos não consigam adicionar e subtrair mentalmente 7, sem usar suportes de registo e/ou materiais diversos. Assim, para verificar se o dia 16 será ou não uma sexta-feira (sabendo que dia 1 o é) os alunos podem usar procedimentos como:

i) *E escrever a sequência numérica entre 1 e 16 e fazer corresponder-lhe os dias da semana*

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>...</td>
<td>15</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Sexta</td>
<td>sábado</td>
<td>domingo</td>
<td>segunda</td>
<td>...</td>
<td>sexta</td>
<td>sábado</td>
<td></td>
</tr>
</tbody>
</table>

ii) *Usar registos que ajudem a adicionar 7, de 1 em 1*

1 I II III é 8 (percebendo que dia 8 vai ser sexta-feira)

8 I I I I I I é 15 (percebendo que dia 15 vai ser sexta-feira)

iii) *Verificar em que dias do mês são as sextas-feiras seguintes, adicionando 7 com o auxílio do ábaco horizontal*
Números naturais, Adição e subtração e Regularidades

CALCULAR EM CADEIA

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2 + 2 =</td>
<td>5 + 5 =</td>
<td>5 – 4 =</td>
</tr>
<tr>
<td>2 + 3 =</td>
<td>5 + 6 =</td>
<td>5 – 3 =</td>
</tr>
<tr>
<td>3 + 2 =</td>
<td>6 + 5 =</td>
<td>5 – 2 =</td>
</tr>
<tr>
<td>3 + 3 =</td>
<td>5 + 4 =</td>
<td>5 – 1 =</td>
</tr>
<tr>
<td>3 + 4 =</td>
<td>4 + 5 =</td>
<td>5 – 5 =</td>
</tr>
<tr>
<td>6 + 6 =</td>
<td>8 + 8 =</td>
<td>10 + 5 =</td>
</tr>
<tr>
<td>6 + 7 =</td>
<td>8 + 7 =</td>
<td>10 + 4 =</td>
</tr>
<tr>
<td>6 + 8 =</td>
<td>7 + 8 =</td>
<td>10 + 2 =</td>
</tr>
<tr>
<td>7 + 6 =</td>
<td>8 + 9 =</td>
<td>10 + 7 =</td>
</tr>
<tr>
<td>8 + 6 =</td>
<td></td>
<td>3 + 10 =</td>
</tr>
<tr>
<td>6 + 8 =</td>
<td></td>
<td>4 + 10 =</td>
</tr>
<tr>
<td>12 – 2 =</td>
<td>10 – 5 =</td>
<td>20 + 4 =</td>
</tr>
<tr>
<td>13 – 3 =</td>
<td>10 – 4 =</td>
<td>20 + 5 =</td>
</tr>
<tr>
<td>13 – 2 =</td>
<td>11 – 5 =</td>
<td>20 + 3 =</td>
</tr>
<tr>
<td>14 – 4 =</td>
<td>11 – 4 =</td>
<td>4 + 20 =</td>
</tr>
<tr>
<td>14 – 3 =</td>
<td>12 – 5 =</td>
<td>20 + 6 =</td>
</tr>
<tr>
<td>14 – 2 =</td>
<td>12 – 4 =</td>
<td></td>
</tr>
</tbody>
</table>

Nota: Não fotocopiar esta folha para os alunos
Tarefa 6 – Calcular em cadeia

Ideias disponíveis e em desenvolvimento

- Compreender e memorizar factos básicos da adição e relacioná-los com os da subtracção
- Adicionar e subtrair usando os números até 10
- Adicionar e subtrair até 20, quando um dos termos é 5, 10 ou 15 ou em que os dois termos são iguais (dobo)

Ideias e procedimentos a desenvolver

- Adicionar e subtrair utilizando a representação horizontal e recorrendo a estratégias de cálculo mental
- Adicionar e subtrair usando os números até 30 e recorrendo a factos conhecidos relacionados com o uso de termos iguais ou múltiplos de 5

Sugestões para exploração

Na página anterior apresentam-se nove exemplos de cadeias numéricas. O(a) professor(a) deve explorar uma de cada vez, à medida que vão sendo trabalhados na aula os cálculos nela incluídos. Atendendo aos valores envolvidos na primeira cadeia, esta pode ser proposta logo no início do trabalho em torno do tema Operações com números naturais. No entanto, para poder explorar a última cadeia, é necessário que os alunos já tenham trabalhado a adição e subtração com números até 20 e que tenham começado a interiorizar a noção de dezena.

Note-se que não estamos a referir-nos à noção mais abstracta de dezena, que corresponde a compreender que uma dezena é um grupo de dez elementos, duas dezenas são dois grupos com dez elementos cada um, ..., e que se adicionar uma dezena com seis unidades obtenho 1 dezena e 6 unidades, ou seja 16. Estamos, sim, a referir-nos ao início da compreensão do conceito de dezena e que é marcado por perceber o “estatuto” especial do 10 – dez unidades – entendendo que 10 mais 6 são 16, 10 mais 10 são 20, ou 10 mais 8 são 18.
A exploração de cadeias numéricas deve ser feita durante todo o ano, à medida que se quer consolidar relações numéricas e propriedades das operações aritméticas. O desenvolvimento do cálculo mental pressupõe um trabalho sistemático, focado no estabelecimento de relações entre os números e as operações, que tem de ser feito ao longo de todo o ano. Nesta tarefa, opta-se por propor cadeias focadas no desenvolvimento das relações numéricas e propriedades das operações que são exploradas inicialmente, como a adição dedobros e “quase dobro”, a propriedade comutativa da adição e a adição e subtração em que pelo menos um dos termos é um múltiplo de 5 ou um número “próximo” deles.

Cada cadeia numérica\(^{16}\) é constituída por uma sequência de exercícios de cálculo, sem contexto, relacionados entre si. A relação sequencial entre os elementos que constituem uma cadeia é cuidadosamente pensada, de modo a enfatizar o uso de uma determinada estratégia de cálculo e a desenvolver o cálculo mental. Vejamos, por exemplo, a cadeia:

\[
\begin{align*}
10 - 5 &= \\
10 - 4 &= \\
11 - 5 &= \\
11 - 4 &= \\
12 - 5 &= \\
12 - 4 &=
\end{align*}
\]

O primeiro exercício (10 – 5) corresponde a um cálculo com números de referência cujo resultado, ou os alunos já conhecem de cor, ou podem deduzir com alguma facilidade a partir dos conhecimentos que já têm. Neste caso, podem ser feitas associações rápidas com a representação de 10 e 5 nas molduras do 10, com a tarefa 3 desta sequência, que envolve a marcação de presenças – um cordel “cheio” tem 10 cartões, se tirar os 5 cartões de uma cor, fico com 5 cartões da outra cor - ou com uma outra situação que tenha surgido na sala e que envolva estes valores numéricos.

Com o cálculo seguinte (10 – 4), pretende-se que os alunos façam a ligação com o anterior e percebam que se sei que 10 – 5 é 5, então sei que 10 – 4 é 6 pois tiro uma unidade ao 5 (4 em vez de 5) e por isso a diferença tem de ser superior a 5 em uma unidade. Para resolver 11 – 5 é possível fazer o mesmo tipo de raciocínio, relacionando 11 – 5 com 10 – 5. Para resolver 11 – 4 pode-se pensar em 11 – 5, resultado já conhecido. Finalmente, para resolver 12 – 5 e 12 – 4, pode usar-se o mesmo tipo de raciocínio que anteriormente.

O modo como o(a) professor(a) trabalha na sala de aula cada cadeia, é determinante para que todas as suas potencialidades sejam exploradas com sucesso. Destacamos três elementos fundamentais: o tempo, a organização da sala e a condução da exploração da tarefa com os alunos.

Cada cadeia é uma proposta de atividade que deve ter um ritmo vivo, em que se privilegia a oralidade (e não o registo escrito no caderno) e que não deve demorar muito tempo. Pode, por exemplo, começar-se o dia de trabalho, propondo uma cadeia numérica e procurando que ela seja explorada em não mais do que 15 minutos.

A organização da sala deve ser pensada de modo a manter os alunos “presos” ao cálculo que se está a analisar/propor. Nos casos em que na sala se usa um espaço com tapete/almofadas, a exploração das cadeias pode ser feita nele. Os alunos sentam-se próximos uns dos outros e do(a) professor(a), que vai registando as respostas dos alunos e ilustrando o modo como cada um explica o que pensou. Caso não exista este tipo de espaço na sala de aula, os alunos podem estar sentados na sua mesa de trabalho, mas focados no que o(a) professor(a) pede e escreve, não devendo registar no seu caderno o que vai sendo escrito no quadro. Podem ter uma folha ou bloco de notas para fazer registos. No entanto, devem ser registos que servem para não se “perderem” a fazer um determinado cálculo ou para conseguir recordar o que pensaram. Registos mais cuidados podem ser efectuados em casos esporádicos, em que se considera que devem ser assinalados desta forma, mas não durante a realização da cadeia. Cálculos em cadeia são um tipo de tarefa que visa o desenvolvimento do cálculo mental e que, por isso, não se deve basear no registo escrito.

Na condução da exploração da tarefa é importante que os exercícios da cadeia sejam apresentados um a um, que cada aluno pense na solução sozinho e que o(a) professor(a) registe no quadro os resultados e explicações que evidenciem como se pode pensar para os obter. Vejamos em detalhe estas sugestões, tomando como exemplo a exploração da cadeia:

\[
\begin{align*}
10 - 5 &= \\
10 - 4 &= \\
11 - 5 &= \\
11 - 4 &= \\
\end{align*}
\]

O(A) professor(a) escreve no quadro ‘10 – 5 =’ e pede aos alunos para pensarem no resultado e colocarem o dedo no ar quando souberem a resposta. Depois de decorrido algum tempo, quando já bastantes alunos têm o dedo no ar, o(a) professor(a) pede a um deles que diga a sua resposta e que explique como chegou a ela. O aluno pode responder “5” e justificar a sua resposta dizendo que “olhei para os cartões das presenças e vi que se tiramos..."
Números naturais, Adição e subtração e Regularidades

Joana Brocardo, Catarina Delgado e Fátima Mendes

os da mesma cor ali, fico com 5 que são da outra cor”. De modo a explicitar esta resposta para todos, o(a) professor(a) pode registar no quadro:

\[
10 - 5 = 5 \quad \text{\ding{51}} \text{\ding{51}} \text{\ding{51}} \text{\ding{51}} \text{\ding{51}} \text{\ding{53}} \text{\ding{53}} \text{\ding{53}} \text{\ding{53}} \text{\ding{53}}
\]

Se esta cadeia numérica for explorada numa altura em que os alunos já conhecem e usam o colar de contas ou o ábaco horizontal, o(a) professor(a) pode optar por explicar o raciocínio do aluno recorrendo a um destes materiais. Por exemplo, pode mostrar este último e fazer como indicado na figura ao lado.

Depois, pode escrever no quadro \(10 - 4\) e dar novamente algum tempo para cada um pensar sozinho. Pede então a uma das crianças que tem o dedo levantado, que responda e explique como pensou. Se, por exemplo a criança responder “São 6. Vi que no desenho que está ali [referindo-se ao registo \ding{51} \ding{51} \ding{51} \ding{51} \ding{51} \ding{53} \ding{53} \ding{53} \ding{53} \ding{53}] cortava menos uma e ficava com 5 mais 1 que são 6”. No quadro o(a) professor(a) regista:

\[
10 - 4 = 6 \quad \text{\ding{51}} \text{\ding{51}} \text{\ding{51}} \text{\ding{51}} \text{\ding{51}} \text{\ding{53}} \text{\ding{53}} \text{\ding{53}} \text{\ding{53}} \text{\ding{53}}
\]

Tal como anteriormente o(a) professor(a) pode, por exemplo, mostrar esta representação no ábaco horizontal, vincando que “a 10 retira 4, ou seja, menos 1 que anteriormente”.

Pode, então, perguntar aos alunos se alguém pensou de outra forma. Muito provavelmente, haverá crianças que relacionaram o primeiro cálculo com o segundo, explicitando: “Agora ao 10 tiro menos 1. Fica 5 mais 1” ou “Basta olhar para 10 – 5 e ver que agora fica mais 1, fica 6”.

Para a resolução de \(11 - 5\)” e “\(11 - 4\)” deve continuar-se este tipo de exploração.

No final, o(a) professor(a) pode realçar as relações que se foram estabelecendo e o facto de que, desde que se saiba quanto é \(10 - 5\), se pode saber rapidamente quanto é \(10 - 4\), \(11 - 5\) e \(11 - 4\).

Possíveis caminhos a seguir pelos alunos

Os alunos podem justificar os resultados que encontram para cada expressão numérica, de modo diferente. Exemplificam-se, relativamente a duas cadeias, algumas dessas possibilidades.
No caso da cadeia iniciada pelo cálculo $8 + 8$, alguns alunos podem argumentar que $8 + 8$ é igual a 16, com base na decomposição de 8 em $5 + 3$:

\[
\begin{align*}
8 + 8 &= 16 \\
8 &= 5 + 3 \text{ e } 8 = 5 + 3 \\
5 + 5 &= 10 \text{ e } 3 + 3 = 6 \\
10 + 6 &= 16
\end{align*}
\]

Outros podem dizer que sabem que $8 + 8$ é igual a 16, pois já sabem de cor este resultado. Outros, ainda, podem adicionar linearmente, partindo de 8 e adicionando possíveis decomposições do “segundo” 8:

- $8 + 2 = 10$, decompondo 8 em 2 + 6 ($2 + 6 = 8$)
- $10 + 6 = 16$

Para calcular o valor da expressão seguinte, $8 + 7$, no caso de o trabalho com cadeias numéricas já se ter tornado uma actividade habitual na aula, a maioria dos alunos irá estabelecer relações entre $8 + 7$ e $8 + 8$, chegando ao resultado 15. As suas justificações para este cálculo envolvem reconhecer que, como sabem quanto é $8 + 8$, para saber quanto é $8 + 7$ basta subtrair uma unidade a 16.

No entanto, é natural que haja sempre alunos que, embora tendo percebido o tipo de relações que se procura estabelecer com as cadeias numéricas, persistem durante mais tempo em calcular da forma que consideram mais fácil para eles.

Os caminhos seguidos pelos alunos para justificar as suas respostas estão também muito relacionados com o tipo de contextos explorados anteriormente, a que podem recorrer para explicar o que pensaram, ou com o tipo de materiais que conhecem e sabem usar.

Por exemplo, se a cadeia numérica que é iniciada por $10 + 5$ for explorada numa fase em que os alunos estão já familiarizados com o uso do ábaco horizontal, é natural que surjam explicações como as seguintes:

- $10 + 5$ no ábaco é toda a linha de cima e mudamos 5 bolas da outra. Fica 10, 11, 12, 13, 14, 15. São 10 em cima e 5 em baixo. Fica 15.
Esta explicação corresponde aos alunos estarem a “ver” a seguinte representação no ábaco horizontal:

Note-se que, embora aqui se apresentem várias justificações para as respostas que os alunos podem dar, neste tipo de tarefa não se deve despender demasiado tempo, explorando todas as formas diferentes de obter um determinado resultado. O objectivo das cadeias numéricas é o desenvolvimento do cálculo mental, pelo que se deve privilegiar o estabelecimento mental de relações que permitem dar rapidamente uma resposta, sem ter de se estar a pensar exaustivamente em todas as formas possíveis de calcular. Neste sentido, as explicações seguintes, para os restantes cálculos da cadeia iniciada por 10 + 5, podem ser consideradas suficientes.

- 10 + 4 é igual a 14. É menos 1 que o primeiro.
- 10 + 2 é igual a 12. De 10 salto dois e chego a 12.
- 10 + 7 é igual a 17. 10 mais 5 é igual a 15. 15, 16, 17.
- 4 + 10 é igual a 14. É igual a 10 + 4.
Sequência 3

Adição e subtração e Regularidades
<table>
<thead>
<tr>
<th>Tópicos</th>
<th>Objectivos específicos</th>
<th>Notas</th>
<th>Tarefas</th>
<th>Organização temporal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subtração</td>
<td>- Compreender a subtração nos sentidos retirar, comparar e completar.</td>
<td>Calculando utilizando uma recta não graduada.</td>
<td>Calcular com dinheiro</td>
<td>Tarefa para ser explorada durante cerca de 90 minutos.</td>
</tr>
<tr>
<td></td>
<td>- Resolver problemas envolvendo dinheiro.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adição</td>
<td>- Adicionar e subtrair utilizando a representação horizontal e recorrendo a estratégias de cálculo mental e escrito.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtração</td>
<td>- Adicionar e subtrair utilizando a representação horizontal e recorrendo a estratégias de cálculo mental.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Relacionar para calcular</td>
<td>Devem ser realizados dois conjuntos de expressões numéricas em cada dia, durante cerca de 15 minutos.</td>
</tr>
<tr>
<td>Sequências</td>
<td>- Identificar e dar exemplos de números pares e ímpares.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Investigar regularidades em sequências de números.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

17 Os dois últimos objectivos da tarefa Calcular com dinheiro são do tema Geometria e Medida, do tópico Dinheiro.
CALCULAR COM DINHEIRO

Quem tem mais?

Quanto a mais?
CALCULAR COM DINHEIRO

15 €

18 €

9 €

100
Tarefa 1 – Calcular com dinheiro

Materiais

- Fotocópia das folhas da tarefa

Ideias disponíveis e em desenvolvimento

- Conhecer e relacionar as moedas e notas do euro e realizar contagens de dinheiro\(^{18}\)
- Compreender e memorizar factos básicos da adição e relacioná-los com os da subtração

Ideias e procedimentos a desenvolver

- Compreender a subtração nos sentidos retirar, comparar e completar
- Resolver problemas envolvendo dinheiro\(^{19}\)

Sugestões para exploração

O propósito principal desta tarefa é contribuir para o desenvolvimento da capacidade de resolução de problemas envolvendo contextos de subtração de números até 20. Mais concretamente, pretende-se que os alunos sejam colocados perante problemas que envolvam diferentes sentidos da subtração (retirar, comparar e completar), de modo a evidenciar a estreita relação existente entre a subtração e a adição.

O dinheiro, nomeadamente as notas de euro, constituem um contexto que ajuda os alunos a estruturar os números até 20, em grupos de 5 e de 10, facilitando o cálculo até esta quantidade.

Na exploração desta tarefa sugere-se que o(a) professor(a) proponha a resolução individual (ou a pares) de cada uma das situações, seguindo-se uma discussão com toda a turma. É importante que, nesta discussão, se incentivem os alunos a verbalizarem o modo como pensaram e se efectuem registos no

\(^{18}\) Este objectivo é do tema Geometria e medida, no tópico Dinheiro

\(^{19}\) Este objectivo é do tema Geometria e medida, no tópico Dinheiro
quadro que traduzam os seus raciocínios, recorrendo a simbologia matemática.

Esta tarefa é constituída por três situações, todas elas relacionadas com a operação subtração.

A primeira das situações inclui duas questões - quem tem mais dinheiro, a Ana ou o Rui e quanto tem a mais. Na primeira questão *Quem tem mais?* os alunos são desafiados a adicionar quantias de dinheiro recorrendo a diferentes tipos de notas e moedas e a comparar as quantias obtidas. Observe-se que a quantia de dinheiro de Ana surge estruturada em grupos de 5, enquanto a de Rui inclui já grupos de 10, utilizando-se, por isso, menos notas para representar uma quantidade maior. Esta é uma ideia que nem sempre é clara para os alunos, considerando, muitas vezes que, quanto mais notas ou moedas têm, maior será a quantia de dinheiro. Espera-se que, nesta fase, o cálculo aditivo de números até 20 esteja já automatizado.

À questão *Quanto a mais?* está associado o sentido comparar da subtração. A ideia é que os alunos comparem as quantias de dinheiro de Ana e de Rui e calculem a quantia que um tem a mais do que o outro. Dada a proximidade dos números envolvidos, a estratégia mais natural é a contagem progressiva a partir do número 16 até ao 19. Assim, os alunos estão à procura da quantia que precisam juntar a 16 para obter 19, recorrendo à adição. Embora seja menos espectável, podem também efectuar contagens regressivas, contando para trás, de 19 até 16. Neste caso, utilizam a operação subtração, retirando 3 a 19.

A segunda situação conduz os alunos a pensarem no dinheiro que precisam de juntar a 15 euros para perfazerem os 18 euros do livro. O sentido da subtração associado a este problema é o de completar. Com efeito, a estratégia mais natural é pensar na quantia que falta a 15 para perfazer os 18 euros, efectuando contagens progressivas de 15 até 18.
A imagem da terceira situação sugere a procura da quantia que resta no mealheiro quando se retiram 9 euros para comprar um livro. Estamos perante um problema de subtração ao qual está associado o sentido de retirar. Simbolicamente, esta situação representa-se do seguinte modo:

$$20 - 9 = ____$$

Possíveis caminhos a seguir pelos alunos

Na questão inicial da primeira situação, os alunos começam por calcular o dinheiro de Ana e de Rui. Para determinar essas quantias efectuam diferentes cálculos. Contudo, espera-se que, pelo facto de se apresentarem notas de 5 e de 10 euros, os alunos recorram a grupos de 5 e de 10, como mostram os seguintes exemplos:

Dinheiro de Ana:

- Recorrem ao facto de $5+5$ são 10
- Recorrem aos factos de $5+5$ são 10 e de $10+5$ são 15
- Recorrem ao facto de $5+5+5$ são 15

Dinheiro de Rui:

- Recorrem ao facto de $10+5$ são 15
- Recorrem ao facto de $10+5$ são 15
Na segunda questão da primeira situação, para calcularem qual a quantia que Rui tem a mais do que Ana, os alunos podem utilizar as seguintes estratégias:

- **Contam para a frente a partir de 16 até ao 19: 17, 18, 19..., são 3.**
- **Contam para trás a partir de 19 até 16: 18, 17, 16..., são 3.**
- **Contam para a frente a partir de 16 até 18 e juntam 1 (utilizam o conhecimento da sequência de números pares até 20)**

Na segunda situação, para calcularem o dinheiro que têm de juntar a 15 para perfazer a quantia 18, os alunos podem recorrer às seguintes estratégias:

- **Contar para a frente a partir de 15 até ao 18: 16, 17, 18..., são 3.**

- **Contar para trás a partir do 18 até ao 15: 17, 16, 15..., são 3.**

No último problema, que corresponde à terceira situação proposta, os alunos são convidados a calcular o dinheiro que sobra, dos 20 euros, quando compram um livro que custa 9 euros. O sentido retirar da subtração, associado a este problema, conduz naturalmente os alunos a tirar 9 de 20. Contudo, podem usar diferentes procedimentos:
Partindo do 20 tentam chegar ao 9. Do 20 tiram duas vezes o 5 ou uma vez o 10, e, em seguida, tiram mais 1, chegando ao 9.

\[20 - 5 = 15 \]
\[15 - 5 = 10 \]
\[10 - 1 = 9 \]
Logo \[5 + 5 + 1 = 11 \]
sobram 11 euros

Ou

\[20 - 10 = 10 \]
\[10 - 1 = 9 \]
Logo \[10 + 1 = 11 \]
Sobram 11 euros

Do 20 tiram 10 e depois juntam 1, compensando. Note-se que, o facto de o livro custar quase 10 euros, pode levar os alunos a utilizarem este procedimento. Neste caso, recorrem ao facto conhecido que \[10 + 10 \] são 20.

\[20 - 10 = 10 \]
\[10 + 1 = 11 \]
Então, \[20 - 9 = 11 \], sobram 11 euros

Contam para a frente a partir de 9 e até 20:

\[1 + 5 + 5 = 11 \], sobram 11 euros Ou \[1 + 10 = 11 \], sobram 11 euros
CALCULAR COMO ...

Quantas páginas faltam para acabar de ler o livro?

Vê como Marta e Miguel resolvem este problema.

Resolução da Marta

António

\[
\begin{align*}
&\quad +1
\downarrow
10 \\
9 &\quad +10
\downarrow
20 \\
&\quad +5
\downarrow
25
\end{align*}
\]

\[1 + 10 + 5 = 16\]

Tem 16 páginas para ler

Raquel

\[
\begin{align*}
&\quad +5
\downarrow
15 \\
&\quad +10
\downarrow
30 \\
&\quad +2
\downarrow
32
\end{align*}
\]

\[5 + 10 + 2 = 17\]

Tem 17 páginas para ler

Resolução do Miguel

António

\[
\begin{align*}
&\quad -1
\downarrow
9 \\
&\quad -10
\downarrow
20 \\
&\quad -5
\downarrow
25
\end{align*}
\]

\[5 + 10 + 1 = 16\]

Tem 16 páginas para ler

Raquel

\[
\begin{align*}
&\quad -5
\downarrow
15 \\
&\quad -10
\downarrow
30 \\
&\quad -2
\downarrow
32
\end{align*}
\]

\[2 + 10 + 5 = 17\]

Tem 17 páginas para ler
Resolva os problemas desta página calculando como Marta ou Miguel.

Na Modas & Modas

Qual é o desconto?

| T-shirt | 28 | 34 |

Calculei como _______________

Parque de estacionamento

<table>
<thead>
<tr>
<th>Zona A</th>
<th>27 lugares</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zona B</td>
<td>45 lugares</td>
</tr>
</tbody>
</table>

A zona B tem quantos lugares a mais do que a zona A?

Calculei como _______________

Tenho 35 rifas para vender. Vendi 22.

Quantas rifas me faltam vender?

Calculei como _______________

Ténis

| Tamanho 29 | Tamanho 44 |

Qual é a diferença de número entre os ténis?

Calculei como _______________

Joana Brocardo, Catarina Delgado e Fátima Mendes
Tarefa 2 – Calcular como...

Materiais

✧ Fotocópia das folhas da tarefa

Ideias disponíveis e em desenvolvimento

✧ Compreender a subtração nos sentidos retirar, comparar e completar
✧ Adicionar e subtrair utilizando a representação horizontal e recorrendo a estratégias de cálculo mental e escrito

Ideias e procedimentos a desenvolver

✧ Adicionar e subtrair (até 50) utilizando a representação horizontal e recorrendo a estratégias de cálculo mental e escrito
✧ Utilizar a recta não graduada para resolver problemas de adição e de subtração

Sugestões para exploração

Esta tarefa incide sobre três aspectos basilares para a compreensão da operação subtração. Um primeiro, relaciona-se com as estratégias que podem ser usadas para resolver um problema de subtração e que aqui são apresentadas via as estratégias usadas por Marta e Miguel: Marta usa uma estratégia aditiva e Miguel uma estratégia subtractiva.

Um segundo aspecto prende-se com o uso da recta não graduada como suporte para a resolução de problemas de subtração. De facto, os procedimentos usados por Marta e Miguel, devem ser analisados e usados pelos alunos, o que corresponde a pedir-lhes que “saltem” na recta e que compreendam como é que, deste modo, conseguem resolver estes problemas.

Um terceiro aspecto diz respeito à compreensão dos sentidos da subtração que, do ponto de vista dos alunos, se traduz na compreensão de situações de comparar, retirar ou completar. Sublinha-se que, identificar os sentidos da subtração, não é de todo um objectivo para os alunos. O que é importante é
que, como está no programa, eles compreendam a subtração nos seus três sentidos e que, como tal, saibam resolver os diferentes tipos de problemas.

Sugere-se que esta tarefa seja explorada em três momentos distintos: análise das resoluções de Marta e Miguel com toda a turma, resolução individual dos quatro problemas da segunda página da ficha de trabalho dos alunos e discussão global da tarefa no grupo turma. Na globalidade, a exploração desta tarefa não deve ultrapassar 90 minutos, propondo-se uma distribuição aproximada pelos três momentos de 15+50+25 minutos.

Depois de distribuir uma fotocópia das folhas da tarefa, o(a) professor(a) pode pedir aos alunos para, em silêncio, interpretarem o que está registado na primeira folha. A discussão com toda a turma deve permitir que todos os alunos compreendam:

i) A situação apresentada. Para alguns alunos isso poderá implicar concretizá-la, olhando para um dos livros que está na sala e perceber em que se podiam traduzir as afirmações de Raquel e António. O recurso a este tipo de exemplo para perceber a situação apresentada não deve ser uma regra. Antes pelo contrário, ele só deve ser usado no caso de prevalecerem dúvidas, depois de se ter recorrido a outras explicitações que não implicam uma concretização num exemplo físico. De facto, pretende-se que os alunos consigam interpretar situações como estas, o que implica o progressivo abandono de “modelos concretos” da situação. Ler e ver ler um livro, é uma experiência familiar para os alunos, pelo que muitos deles podem conseguir dar sentido à situação apresentada, “vendo-a na sua cabeça”.

ii) O modo como Marta e Miguel resolvem o problema apresentado. Uma vez que os alunos já usaram a recta não graduada em diferentes situações, a interpretação do modo como Marta e Miguel a usam, não deve levantar muitas dificuldades. De qualquer forma, é importante dedicar alguns minutos à sua explicitação, referindo o uso de duas estratégias diferentes: Marta adiciona e Miguel subtrai.

iii) O que é pedido que cada aluno faça individualmente. Antes de passar para a resolução dos quatro problemas deverá ser clarificado que se pretende que resolvam cada problema, escolhendo, ou o procedimento de Miguel, ou o de Marta. A escolha deverá ter em conta o que consideram ser mais “fácil” para cada situação proposta.

Depois da resolução individual dos quatro problemas, a fase de discussão com toda a turma, para além de permitir verificar a correção das respostas dos alunos, deve contribuir para relacionar o entendimento de cada situação com o procedimento usado. É natural, por exemplo, que muitos alunos tenham recorrido à adição para resolver o problema das rifas, pois ele envolve o
sentido completar da subtracção: completar o “espaço” entre 22 (número de rifas que foram vendidas) e 35 (número total de rifas que se tem para vender). Pelo contrário, será natural que, para resolver o primeiro problema, que é um exemplo de uma situação de retirar, muitos alunos optem por usar a estratégia de Miguel e subtraíam.

No entanto, há sempre alunos que optam por usar a estratégia que para eles é mais fácil, independentemente da situação proposta “apelar” ou não ao seu uso, situação que só se altera, progressivamente, à medida que vão aprofundando os seus conhecimentos. No caso concreto desta tarefa, será natural que o uso da estratégia de Marta seja mais “popular” que a de Miguel.

Possíveis caminhos a seguir pelos alunos

Nesta tarefa, uma vez que as possíveis estratégias e procedimentos estão à partida identificados, não há grande possibilidade de que as respostas dos alunos sejam muito diferentes umas das outras. É, no entanto, provável que o comprimento dos “saltos” varie bastante, tendo em conta o nível de estruturação dos números e das operações de cada aluno.

Por exemplo, no último problema, sobre a diferença de número entre os ténis, dois alunos que calculem como Miguel podem apresentar as suas resoluções como nos exemplos.

No segundo problema, do parque de estacionamento, duas crianças que optem pela estratégia da Marta podem, por exemplo, apresentar as seguintes resoluções:
RELACIONAR PARA CALCULAR

Contorna com o lápis azul \(\bigcirc\) a operação que efectuavas em primeiro lugar no primeiro conjunto. Contorna de amarelo \(\bigcirc\) a que efectuavas em segundo lugar. Contorna de preto \(\bigcirc\) a que efectuavas em último lugar.

Explica como calculavas o resultado de cada operação a partir da tua ordenação.

Faz o mesmo para os outros conjuntos.

\[
\begin{align*}
31 + 43 & \quad 33 + 43 & \quad 30 + 40 & \quad 27 - 19 & \quad 27 - 20 \\
27 - 18 & \\
125 + 25 & \quad 25 + 25 & \quad 124 - 25 & \quad 100 - 51 & \quad 100 - 49 & \quad 100 - 50 \\
29 + 29 & \quad 30 + 29 & \quad 31 + 29 & \quad 47 + 48 & \quad 45 + 50 & \quad 47 + 47 & \quad 50 + 50
\end{align*}
\]
Tarefa 3 – Relacionar para calcular

Materiais

- Fotocópia da folha da tarefa

Ideias disponíveis e em desenvolvimento

- Compreender e memorizar factos básicos da adição e relacioná-los com os da subtração
- Relacionar o conhecimento de factos básicos da adição e subtração e usá-los para efectuar cálculos

Ideias e procedimentos a desenvolver

- Adicionar e subtrair utilizando a representação horizontal e recorrendo a estratégias de cálculo mental
- Adicionar e subtrair usando os números até 150 e recorrendo a factos conhecidos relacionados com o uso de termos iguais ou múltiplos de 5 e de 10

Sugestões para exploração

Na página anterior apresentam-se seis conjuntos de expressões numéricas. Embora estejam colocados na mesma folha de tarefa, propõe-se que a sua exploração ocorra em três momentos diferentes, com a duração de 15 minutos cada um.

Esta tarefa tem como objectivo principal relacionar conhecimentos básicos sobre a adição e a subtração que os alunos estão a adquirir e consolidar. Por isso, começa-se por pedir aos alunos que pensem na ordem pela qual calculariam o valor de cada expressão numérica, mas sem o determinar. Só em seguida é que se solicita que o calculem, pressupondo que o farão explicitando as relações subjacentes à escolha inicial de determinada ordem.

Na primeira vez que este tipo de tarefa é explorado na aula, propõe-se que se combinem momentos de trabalho individual com momentos de discussão no grupo turma. O(a) professor(a) pode começar por pedir aos alunos para...
observarem o primeiro conjunto de expressões numéricas e, explicitarem o que se pede em primeiro lugar - contornar as expressões com as respectivas cores, de acordo com a ordem pela qual pensam ser mais fácil efectuar os cálculos, relacionando-os. É natural que os alunos, no início, não percebam muito bem o objectivo da tarefa e que rodeiem as expressões, não porque as relacionaram entre si, mas porque sabem calcular o seu valor. Por isso, é importante que, depois de cada aluno ter rodeado as expressões com as várias cores, o(a) professor(a) clarifique o objectivo da tarefa durante a discussão geral com a turma. Para isso pode usar uma ordenação proposta por um dos alunos, que não tenha em conta as relações entre as expressões.

É provável que alguns alunos ordenem de acordo com o modo como as expressões estão colocadas na ficha, rodeando de azul 31 + 43, de amarelo 33 + 43 e de preto 30 + 40. A sua justificação para esta ordenação poderá corresponder, por exemplo, à indicação do valor de cada expressão, sem que tenham estabelecido nenhuma relação entre elas:

\[31 \text{ mais } 43 \text{ é igual a } 74, \ 33 \text{ + } 43 \text{ é igual a } 76, \ 30 \text{ mais } 40 \text{ é igual a } 70. \]

Este tipo de resposta deve ser explorado para clarificar o objectivo desta tarefa. O(a) professor(a) poderá insistir na ideia de que o que pretende, para já, não é saber o valor de cada expressão e que por isso, esse conhecimento não pode justificar a ordenação que se propõe. O que se quer é relacionar as expressões, de tal forma que, se se souber o valor da primeira, se pode facilmente saber o valor da segunda. Se se souber o valor da segunda, se pode saber facilmente o valor da terceira, e assim sucessivamente.

Recorrendo à ordenação em que se começa por 30 + 40 e, no caso de ela ter sido sugerida por alguns alunos, à exploração e explicitação das justificações que dão para a sua resposta, o(a) professor(a) deve clarificar o que se pretende. 30 + 40 é a expressão que “mais” ajuda a determinar o valor das outras: 31 + 43 é igual a ’+ 1 + 3’ do que ela e 33 + 43 é ’+ 3 + 3’ do que ela. A ordenação seguinte corresponde a optar por colocar em primeiro lugar a que ajuda mais a resolver a última. Neste caso é 31 + 43 uma vez que basta adicionar 2 para obter 33 + 43.

É importante que os alunos vão percebendo que não há uma forma única de ordenar as expressões. Tudo depende do modo como se vêem as relações entre elas. Por exemplo, pode acontecer que um aluno proponha:

\[\text{Colocar em primeiro lugar } 31 + 43, \text{ explicando que a partir } 31 + 43 \text{ consegue obter } 33 + 43, \text{ que ficará em segundo lugar, somando } 2; \]

\[\text{Colocar em terceiro lugar a expressão } 30 + 40, \text{ explicando que, a partir de } 33 + 43, \text{ a consegue obter subtraindo } 6. \]
O que é fundamental é que, na ordenação proposta, se usem as relações entre as expressões. Por isso, é natural que os alunos comece por escolher as expressões que envolvem números com que facilmente calculam mentalmente como os múltiplos de 10 e de 5, ou os dobros de determinados números. Também é de esperar que, nas relações entre as expressões, usem inicialmente a adição (tal como acontece na ordenação 30 + 40, 31 + 43, 33 + 43) e, só mais tarde, recorram à subtração (tal como acontece na ordenação 31 + 43, 33 + 43, 30 + 40).

A diversidade de relações encontradas deve ser focada na discussão com toda a turma. No entanto, é importante manter um ritmo rápido que mantenha os alunos interessados. Isso implica optar pela explicitação de uma ou, quanto muito, duas ordenações possíveis. De facto, não se deve ter a preocupação de estabelecer todas as relações possíveis entre as várias expressões de cada conjunto. Essa diversidade vai surgindo à medida que se exploram mais relações e que os alunos conhecem melhor um conjunto de factos e de relações numéricas.

Nos manuais escolares existe, habitualmente, um conjunto de tabelas e/ou expressões numéricas que podem igualmente ser resolvidas sob a perspectiva que se apresenta nesta tarefa. Note-se no entanto, que não se defende que todos os exercícios desse tipo sejam usados na perspectiva que aqui se apresenta. Saber calcular directamente o valor de uma determinada expressão, tal como se propõe habitualmente, tanto na sala de aula como nos manuais e noutros materiais de apoio ao ensino e à aprendizagem, é um objectivo muito relevante. Contudo, isso não quer dizer que não seja importante pensar em formas de relacionar essas expressões, consolidando assim o uso de conhecimentos básicos sobre os números e as operações.

Possíveis caminhos a seguir pelos alunos

No conjunto constituído pelas expressões 29 + 29, 31 + 29, 30 + 29 é natural que, influenciados pela forma como facilmente estabelecem relações com os números que são múltiplos de 10, muitos alunos contornem 30 + 29 de azul. A escolha da segunda expressão, a contornar de amarelo, pode ser menos consensual. Alguns alunos vão relacionar as expressões desta forma:

\[
\begin{align*}
30 + 29 & \quad \text{é igual} \\
31 + 29 &
\end{align*}
\]

Por isso, assinalam 31 + 29 de amarelo e indicam que o seu valor é igual à soma de 30 com 29 mais 1.
Outros podem estabelecer a seguinte relação:

\[
\begin{align*}
30 + 29 &\quad \text{é igual} \\
29 + 29 &\quad \text{−1}
\end{align*}
\]

Deste modo, assinalam 29 + 29 de amarelo e indicam que o seu valor é igual à soma de 30 com 29 menos 1.

No caso de os alunos já terem trabalhado exemplos em que transformam parcelas de uma adição, compensando as alterações que fazem, pode acontecer que alguns deles pensem em começar por 31 + 29, contornando-o de azul. De facto, há alunos para quem 31 + 29 é logo visto como sendo igual a 30 + 30. Neste caso, as relações com as outras adições podem ser estabelecidas percebendo que basta subtrair 1 para obter o resultado da expressão seguinte, ficando a sequência 31 + 29, 30 + 29, 29 + 29.

Ao contrário do conjunto anterior, em que é provável que surjam várias propostas de ordenação das expressões, no constituído por 27 – 19, 27 – 20 e 27 – 18 é natural que todos os alunos contornem de azul 27 – 20. De facto, trata-se da única expressão deste conjunto que não envolve subtrair com empréstimo, facto que a faz escolher para base dos cálculos seguintes. No entanto, esta facilidade em identificar a expressão de partida nem sempre é acompanhada por uma resposta correcta, quando se calcula o valor de cada expressão. Na subtracção, quando se mantém o aditivo e se diminui subtractivo alguns alunos tendem também a subtrair no resto, em vez de adicioná-lo:

\[
\begin{align*}
27 - 20 &\quad = 7 \\
27 - 20 &\quad \text{−1} \\
27 - 19 &\quad = 8
\end{align*}
\]

Este conjunto de expressões numéricas pode ser usado para compreender como se deve pensar para estabelecer correctamente relações como as anteriores, percebendo que como se retira menos uma unidade, se fica com mais uma unidade no resto:
Extensão

Quando os alunos já estão muito familiarizados com este tipo de relações, o(a) professor(a) pode escrever uma expressão numérica no quadro e pedir que cada um pense numa outra expressão que esteja “relacionada” com a anterior e cujo valor seja: igual ao da expressão inicial, superior/inferior em x unidades ou o dobro do valor da expressão inicial.

Alguns exemplos de propostas possíveis do(a) professor(a) e do que os alunos podem responder:

<table>
<thead>
<tr>
<th>Expressão que é registada no quadro</th>
<th>O que é pedido</th>
<th>Algumas respostas dos alunos</th>
</tr>
</thead>
</table>
| 12 + 10 | Uma expressão “relacionada” com a anterior e cuja soma seja superior em 2 unidades | 14 + 10
12 + 12
13 + 11 |
| 17 – 7 | Uma expressão “relacionada” com a anterior e cuja diferença seja inferior em 1 unidade | 17 – 8
18 – 9
29 – 20 * |

Assinalou-se com * uma resposta que exemplifica uma possibilidade de clarificar o que se entende por “relação” entre as expressões. Em absoluto, é possível relacionar 29 – 20 com 17 – 7. No entanto, é muito pouco provável que tenha sido com base na observação de possíveis relações que os alunos apresentem 29 – 20. O mais provável é que tenham pensado no resultado: 17–7 é 10, e depois pensaram numa subtração que sabem que é igual a 9, ou seja, menos 1 que 10. Sendo assim, esta resposta não corresponde ao que foi pedido, pois o foco para pensar não é colocado nas relações entre as expressões.
Numerando ruas e estantes
NUMERANDO RUAS E Estantes

do lado esquerdo da sala

| 3 | 1 | 5 |

do lado direito da sala

| 4 | 2 | 6 |
NUMERANDO RUAS E ESTANTES

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>
Tarefa 4 – Numerando ruas e estantes

Materiais

- Fotocópias da folha da tarefa
- Cartões numerados de 1 a 50 que podem ser recortados na página anterior
- Papel de cenário em que se representam duas estantes

Ideias disponíveis e em desenvolvimento

- Contar até 50
- Identificar a representação dos números até 50
- Contar a partir de um número dado, de 1 em 1, de 2 em 2 e de 3 em 3

Ideias e procedimentos a desenvolver

- Identificar e dar exemplos de números pares e ímpares
- Investigar regularidades em sequências de números
- Continuar a construção de uma dada sequência numérica, identificando a sua lei de formação
- Contar a partir de um número dado, de 4 em 4

Sugestões para exploração

Antes da exploração desta tarefa é importante que os alunos já tenham observado que as portas de entrada de cada prédio ou casa são identificadas com um número e que, em cada lado de uma rua, esses números não são registados sequencialmente uns a seguir aos outros tal como 1, 2, 3, 4, ... Um dos pontos de partida para esta fase prévia, pode surgir relembrando o exemplo do envelope de Miguel, usado na tarefa “Onde está?” (sequência 1, tarefa 5).

Esta tarefa deve ser explorada em três fases, que podem realizar-se em dias diferentes, de acordo com as sugestões que se apresentam a seguir. A maior
parte das questões que se propõem em cada uma das fases desta tarefa, podem ser resolvidas a um nível bastante elementar que assenta na contagem 1 a 1. Por isso, é importante que o(a) professor(a) suscite e explore diferentes desafios e justificações, de modo a fazer emergir resoluções que vão para além da simples contagem 1 a 1.

1.ª Fase (cerca de 20 minutos de duração)

O(a) professor(a) explica o que está representado na primeira imagem da folha da tarefa que cada aluno tem. Pode, por exemplo, dizer que a imagem representa uma parte da rua onde habita, em que o primeiro prédio de um dos lados da rua tem o número 2. Em seguida, coloca a toda a turma a questão “qual será o número da porta do prédio ao lado?”. A discussão desta questão com toda a turma deveclarificar que neste lado da rua estão colocados os números pares e, por isso, o número da porta do prédio seguinte não pode ser 3.

A partir daí, o(a) professor(a) pede para cada aluno, individualmente, unir os números colocados no lado direito da ficha às portas dos prédios, de modo a conseguir “numerar” os restantes.

A análise do trabalho individual de cada aluno deve suscitar, para além da correcção do que cada um fez, uma discussão que pode ser gerada pelas respostas/questões dos alunos e/ou por questões que o(a) professor(a) coloca:

☆ Que números é que não posso colocar nestes prédios? Onde deveriam ser colocados?

☆ Em que lado da rua podia “ficar” o número 23? E o 36?

☆ Quantos prédios estão entre o número 8 e o 20? E entre o 5 e o 17?

2.ª Fase (cerca de 30 minutos de duração)

O(a) professor(a) começa por explicar o que está representado na segunda parte da folha da tarefa que cada aluno tem: duas estantes, uma em frente da outra, colocadas nas paredes de uma sala. Em seguida explica que todos os livros têm etiquetas, numeradas de 1 a 32 e que os livros devem ser arrumados nas estantes com um número igual ao da sua etiqueta.

De modo a que a situação apresentada seja clara para as crianças, pode simular o que se pretende representar na folha da tarefa, tomando como exemplo a sala de aula. Afixam-se, em lados opostos da sala, duas estantes, desenhadas em papel de cenário e idênticas às da figura que os alunos têm. Para clarificar o modo de colocar os livros na estante, pode simular a arrumação de um livro que tenha a etiqueta 2 e outro que tenha a etiqueta 3.
Depois de os alunos terem compreendido o contexto apresentado, devem ser-lhes colocadas questões do tipo:

- Em que local da estante ficará um livro com a etiqueta 7? E com a etiqueta 8?

Em seguida, o(a) professor(a) deve propor aos alunos que, em pequenos grupos, assinalem nas estantes os restantes números.

Na discussão em grande grupo das resoluções dos alunos, podem ser colocados os cartões numéricos no correspondente lugar da estante. Embora tenendo em conta que, a partir do momento em que os alunos “vêem” o modo de organizar os números nas estantes, não será necessário continuar a pedir justificações sistemáticas, é importante que as crianças saibam justificar as suas respostas usando os conceitos de número par e número ímpar. É também importante que percebam a formação das várias sequências que exemplificamos, para a estante do lado esquerdo da sala:

- Os livros que ficam nesta estante têm etiquetas com os números ímpares: 1, 3, 5, 7, 9, 11, ...

Para perceber se ficam na parte de cima ou na parte de baixo da estante os alunos podem recorrer à imagem da estante e pensar das seguintes formas:

- Adicionar 2, em baixo e em cima sucessivamente, preenchendo as duas prateleiras da estante
Adicionar 4 em baixo sucessivamente

![Diagrama de adição em baixo sucessivamente]

Adicionar 4 em cima sucessivamente

![Diagrama de adição em cima sucessivamente]

Pedindo aos alunos que imaginem estantes maiores, o(a) professor(a) pode ainda colocar as seguintes questões:

- **Se a estante fosse maior, em que parede e em que parte da estante (parte de cima ou parte de baixo) ficaria um livro com a etiqueta 42?**

- **Em que estante e local da estante ficaria o livro com a etiqueta 99? E com a etiqueta 120?**
3.ª Fase (cerca de 40 minutos de duração)

O ‘formato’ da numeração das estantes pode ser alterado, originando diferentes sequências numéricas. Numa outra parede da sala pode afixar-se, por exemplo, a imagem de uma estante como a seguinte, pedindo aos alunos para colocarem as etiquetas numéricas respectivas a cada uma das divisórias.

Neste exemplo não surge a separação, por prateleiras, em sequências de pares e ímpares, uma vez que, em cada prateleira horizontal, surgem tanto números pares como ímpares. Nas prateleiras de baixo, do meio e de cima, são arrumados os livros cujas etiquetas correspondem, respectivamente, às seguintes sequências numéricas:

- 1, 4, 7, 10, 13, ...
- 2, 5, 8, 11, 14, ...
- 3, 6, 9, 12, 15, ...

Possíveis caminhos a seguir pelos alunos

Na fase 1, para justificar o modo como se sabe em que lado da rua fica o 23, podem surgir respostas que envolvem, por exemplo, contar de 1 em 1 e ir "assinalando" com as mãos o lado da rua em que ficariam esses números:

- 1 (aponta com a mão esquerda para um dos lados da rua), 2 (aponta com a mão direita para o outro lado da rua), 3 (aponta com a mão esquerda ...), 4 (aponta com a mão direita ...), ..., 23 (aponta com a mão esquerda).
Outros alunos podem registar, por escrito, todos os números até 23, organizando-os em duas linhas ou filas:

\[
\begin{array}{ccccccc}
1 & 3 & 5 & 7 & 9 & \cdots \\
2 & 4 & 6 & 8 & 10 & \cdots \\
\end{array}
\]

Estas explicações, embora correctas, correspondem a um raciocínio que tem como base a contagem de 1 em 1. Por isso, é importante que sejam, igualmente, analisados outros procedimentos (usados por alguns alunos ou que surgem a partir de questões que o(a) professor(a) coloca) que os alunos necessitam de saber usar para progredir na sua aprendizagem. Podem surgir, por exemplo, procedimentos que envolvem:

- **Contar de 2 em 2 a partir da porta número 2 (ou número 1);**

- **Contar de 2 em 2 a partir da porta 12 (que já tinham colocado na imagem);**

- **Relacionar esta tarefa com a tarefa “Par ou ímpar” e justificar assim que já se sabe que 20 é par. Com mais 2 quadrados ‘fica’ 22 que é par. Então 23 é ímpar.**

De igual modo é importante que, nas outras fases, sejam analisados procedimentos que correspondem a uma compreensão “poderosa” da construção das várias sequências numéricas, que equivalem a perceber como se pode passar de um termo para o seguinte, a partir de um qualquer termo.