Repository logo
 
Publication

Exploiting low-rank approximations of kernel matrics in denoising applicationS

dc.contributor.authorTeixeira, Ana
dc.contributor.authorTomé, A. M.
dc.contributor.authorLang, E.W.
dc.date.accessioned2023-10-20T14:16:50Z
dc.date.available2023-10-20T14:16:50Z
dc.date.issued2007
dc.description.abstractThe eigendecomposition of a kernel matrix can present a computational burden in many kernel methods. Nevertheless only the largest eigenvalues and corresponding eigenvectors need to be computed. In this work we discuss the Nystrom low-rank approximations of the kernel matrix and its applications in KPCA denoising tasks. Furthermore, the low-rank approximations have the advantage of being related with a smaller subset of the training data which constitute then a basis of a subspace. In a common algebraic framework we discuss the different approaches to compute the basis. Numerical simulations concerning the denoising are presented to compare the discussed approaches.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.urihttp://hdl.handle.net/10400.26/47374
dc.language.isoengpt_PT
dc.publisherIEEEpt_PT
dc.titleExploiting low-rank approximations of kernel matrics in denoising applicationSpt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.citation.conferencePlace[Thessaloniki]pt_PT
oaire.citation.endPage347pt_PT
oaire.citation.startPage342pt_PT
oaire.citation.title[IEEE Workshop on Machine Learning for Signal Processing]pt_PT
person.familyNameTeixeira
person.givenNameAna
person.identifier.ciencia-idD619-A151-8BE2
person.identifier.orcid0000-0002-8120-0148
person.identifier.ridA-3100-2014
person.identifier.scopus-author-id7202385348
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublicationc1ff686d-c3d3-4658-96c6-a1f62a52777a
relation.isAuthorOfPublication.latestForDiscoveryc1ff686d-c3d3-4658-96c6-a1f62a52777a

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Exploiting low-rank approximations of kernel matrices in denoising applications..pdf
Size:
998.73 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.85 KB
Format:
Item-specific license agreed upon to submission
Description: