Complex auditory musical hallucinations with ambivalent feelings

Hugo Canas-Simião, Sandra Teles Nascimento, João Reis, Carina Freitas

SUMMARY
A 78-year-old woman with hypertension, diabetes mellitus type 2 and bilateral sensorineural hearing loss was referenced to geriatric psychiatry consultation. She presented cognitive dysfunction, erotomanic delusion and complex musical hallucinations (MH), described as hearing her neighbour singing a familiar church song along with bells in the background, making comments and talking to her. A computed tomography (CT) of the brain detected small right nucleocapsular and bilateral external capsules hypodensities of presumed vascular aetiology during hospitalisation. MH are a rare phenomenon with heterogeneous aetiology. Most frequently, the cause is hearing impairment; other causes include social isolation, cognitive dysfunction, vascular risk factors and medication. Studies suggest that some brain areas related to musical memory circuitry might be related and not fully mapped. Auditory verbal hallucinations with a voice that either comments, talks or sings to the patient have never been described in the literature, making this clinical case attractive.

BACKGROUND
A hallucination is a perception of a sensory stimulus where none exist. Auditory hallucinations are traditionally associated with schizophrenia but can also arise from injury to any portion of the peripheral and central auditory pathways, described in patients with Alzheimer’s disease and patients with epilepsy and healthy individuals. They can be simple (static, beeping and humming) or complex (voices and music).

Musical hallucinations (MH) are complex auditory hallucinations that comprise tunes, songs, harmonics, timbres, melodies and rhythms, which are perceived without musical stimuli and were first described in 1846 by Jules Baillarger (1806–1891). They can be repetitive and stereotyped—stable MH—or convoluted and susceptible to remodelling—complex MH. Sacks and Blom described different variants. The prevalence of MH was described as 0.16% of general psychiatric admissions and as high as 2.5% in older patients with hearing impairment, but it is overall considered a rare phenomenon and the exact prevalence is not known. The mean age of onset of MH is described to be 56 years, with the majority of patients being female.

Occasionally, they are associated with secondary delusions and accusing others of being responsible for the music, which can severely disable and lead to impaired quality of life and significant distress. However, according to Berrios, MH is perceived as a pleasant experience by most patients. This distinctive significance and pleasant nature of the hallucinations may be related to their heterogeneous aetiologies. Since most patients with MH experience music familiar to them, one can assume that the underlying processes represent abnormal activation of a musical memory circuitry.

Recent functional imaging studies unveiled some brain areas that may explain MH. However, the neural circuitry behind MH is yet to be fully mapped.

The evidence on the treatment of MH is also scarce. Auditory Charles Bonnet syndrome is known to remit following the improvement of hearing. Case studies report successful treatment of MH with antipsychotics, antidepressants and cognitive enhancers depending on the aetiology. According to a review of MH treatment effects by Coebergh et al, ‘treatments for musical hallucinations tend to yield favourable results when they target the main etiological factor of these phenomena’. However, according to the previous authors, ‘there is a need to establish the natural course of musical hallucinations, their response to non-pharmacological treatments, and their effects on the patient’s quality of life’. Aetiological factors may be, however, multiple, entangling the understanding of the natural history of the symptom, the symptom itself and the respective treatment.

Therefore, we describe a rare case of a patient with ambivalent feelings regarding complex MH and discuss their aetiology and treatment.

CASE PRESENTATION
A 78-year-old caucasian woman, illiterate, widow for 15 years, retired for 25 years (had previously worked as a housewife), living with her nephew and one of her three daughters, with a personal medical background of hypertension and diabetes mellitus type 2 was diagnosed with a bilateral hearing loss; she had no relevant familiar psychiatric or medical history. Figures 1–3 show the patient’s tympanogram, reflexes and audiogram, respectively. Pure-tone audiogram showed a bilateral and symmetric moderate to severe sensorineural hearing loss. The tympanogram was type As and stapedial reflexes were present bilaterally.

A year after the diagnosis of hearing impairment, she was referenced to geriatric psychiatry for changes in her behaviour and cognitive dysfunction within 2 years of evolution. Besides cognitive dysfunction, she presented erotomanic delusion regarding her neighbour and complex MH. She described it as hearing her neighbour singing a familiar church song along with bells in
the background, progressively louder during the day. Sometimes, the song was interrupted with auditory verbal hallucinations of her neighbour’s voice making sexual and provocating comments (in the second person) and her neighbour talking to her daughter and spouse, making comments about her (in the third person). Although she was catholic, she did not go to the church for many years, and she never enjoyed music overall.

Moreover, these symptoms were associated with marked distress, especially at night. Interestingly, she felt ambivalent toward her neighbour’s voice: sometimes ‘his voice’ was felt as pleasant, other times distressing and disturbing to her. Listening to music allowed the patient to slightly decrease these phenomena, as she could not identify other alleviators that could change the intensity or the frequency of these auditory hallucinations.

She was then admitted to a psychiatric inpatient unit, where she underwent a complete diagnostic investigation.

INVESTIGATIONS
By the time of admission, a Mini-Mental State Examination (MMSE) was performed, for which she obtained 23/30 (orientation 8/10; registration 3/3; attention and calculation 4/5; recall 2/3; language 6/8 and copying 0/1). Besides cognitive impairment, the patient did not present other significant remarks on the neurologic (including tremor, motricity and sensitivity) and mental state examination. During hospitalisation, the patient completed a blood workup without any findings and underwent a computed tomography (CT) of the brain (figure 4) that detected small right nucleocapsular and bilateral external capsules hypodensities. These are of presumed vascular aetiology, which are associated with diffuse accentuation of the relative hypodensity of the periventricular white substance, which translates to a

![Figure 1](Normal right and left tympanogram.)

![Figure 2](The presence of acoustic reflexes.)

![Figure 3](Audiogram showing a bilateral sensorineural hearing loss.)
probable pattern of chronic microangiopathic leucoencephalopathy. The electroencephalogram excluded epileptiform activity. The clinical team did not perform a neuropsychological evaluation or MRI of the brain. By the time of discharge, the patient obtained the same MMSE results as at the admission.

DIFFERENTIAL DIAGNOSIS
Overall causes for MH include psychiatric disorders (mainly depression), neurodegenerative disorders, hearing impairment, epilepsy (mainly ictal phenomena; auras with musical features are rare), brain tumours, head injury, encephalitis, multiple sclerosis, substance intoxication, thalamic infarcts, subarachnoid haemorrhage, abnormalities of the auditory cortex, post-concussive syndrome, amyloid beta angiitis, migraine, posterior reversible encephalopathy syndrome and multiple system atrophy.

Although MH usually occur in advanced age and hearing impairment is the most commonly identified predisposing condition, only a minority of these patients develops MH. In this patient, social isolation, cognitive dysfunction, vascular risk factors and multiple medications might be additional contributing factors. We believe all of these factors are contributing to the psychopathology of this patient. In addition, the characteristics of these complex hallucinations might reflect the heterogeneous aetiology: church choral music are typical of neurodegenerative disorders and auditory Charles Bonnet syndrome, auditory verbal hallucinations in the second and third person and erotomanic delusion are typical of schizophrenia, which is an unlikely diagnosis for our patient. Likewise, auditory hallucinations, especially in the third person, are classically described as Schneider first line of symptoms for schizophrenia, which is an unlikely diagnosis for our patient. Also, although a familiar singing voice is described in the literature, a voice that (besides singing) also comments and talks to the patient is not typical of any specific disorder and is not described in the literature by this paper’s submission.

Unlike auditory verbal hallucinations, MH are usually associated with otologic, neurologic or psychiatric disorders, depression being the most common psychiatric aetiology. Therefore, our patient’s clinical presentation may result from different affected brain structures that, alongside other case reports, could help in mapping such psychopathology.

Ototologic factors
Auditory inputs and auditory hallucinations are considered the result of gamma-band oscillations (approximately 40 Hz) that resonate in the thalamocortical matrix that differ according to functional brain states dependent on the self-restraint from the inner ear. Hypoacusis, either age related or due to auditory circuit lesions, may result in loss of inhibitory feedback from peripheral auditory structures and sensory deprivation to the auditory cortices, leading to increased sensitivity and activity of the auditory cortices—a similar phenomenon observed in Charles Bonnet syndrome. In a case report of a patient with MH and hypoacusis, hearing aids improved MH; when the patient lost her hearing aids, the MH got worse.

Neurologic factors
Multiple studies regarding MH seem to converge on the implication of the superior temporal sulcus as the most common underlying activation mechanism. Melody selectively activates this auditory association area; activation of the orbitofrontal cortex might be related to some of the emotional characteristics associated with MHs. Studies also suggest the orbitofrontal cortex activates in reply to disagreeable music and has a role in the attribution of emotional significance to stimuli; the same authors hypothesise a brain basis for MH. PET imaging studies...
during active MH also showed that the posterior aspect of the temporal lobes, right basal ganglia, inferior frontal cortices, thalamus, brainstem, pons, cerebellum and auditory radiations were active while the primary auditory cortex was not.\textsuperscript{12,26} The frontal speech areas,\textsuperscript{28} anterior cingulate\textsuperscript{29} left anterior superior temporal gyrus, the motor cortex and postero medial cortex also might have a role in the generation of MH.\textsuperscript{27,30}

Vascular brain lesions can have heterogeneous clinical presentations. Since our patient’s CT shows right nucleocapsular and bilateral external capsules lesions, we believe these areas may also be related to MH, particularly with ambivalent feelings, as exemplified by our patient’s clinical presentation. Furthermore, our findings are consistent with previous studies that show that MHS are associated with primarily bilateral functional changes, with a minor leaning to the right.\textsuperscript{25,31}

Psychiatric disorders and neurotransmitters
MH are different from auditory verbal hallucinations seen in primary affective and psychotic disorders. Patients generally have insight into their MH and usually do not demonstrate other symptoms consistent with psychotic disorders.\textsuperscript{26} Depressive disorders were reported in one-third of senior patients with MH, and, in all cases, treatment of depression improved MH.\textsuperscript{26} Despite evidence of serotonin involvement in MH and auditory processing,\textsuperscript{32,33} our patient did not show symptoms compatible with a depressive illness; a trial with an antidepressant could be, however, beneficial. Citalopram showed benefit with quetiapine\textsuperscript{38}; limited advantages were observed with other antipsychotics.\textsuperscript{26}

Non-pathological phenomena
It is worth noting that voluntary (creative thought) and involuntary (‘earworms’) musical imagery are internal phenomena (‘inner music’),\textsuperscript{39} while MH are, by definition, external. MH are also less frequent, less controllable and usually less familiar\textsuperscript{39} than the former.

MH can remit without intervention and, when they do not, since some are bearable/enjoyable, intervention is not needed.\textsuperscript{23} However, in some patients, MH are so disturbing that treatment is indicated. The response to treatment seems to depend on aetiology.\textsuperscript{23} In cases of auditory Charles Bonnet syndrome, treating the hearing impairment (hearing aids) and coping strategies (eg, more acoustic stimulation) can improve the symptom; cholinergic enhancers like donepezil can also be helpful.\textsuperscript{35} In fact, a cholinergic deficit is described as being associated with MH.\textsuperscript{23} Acetylcholine mediates inner hair cells depolarisation, and hyperpolarisation seems to have a role in recognising signals in a noisy environment, involving pathways to the cochlear nucleus.\textsuperscript{37}

Learning points
- Musical hallucinations (MH) can be present with a heterogeneous aetiology, like our patient.
- Since patients with MH experience music familiar to them, underlying processes may represent abnormal activation of a musical memory circuitry (in which the posterior temporal lobes, right basal ganglia, inferior frontal cortices and frontal speech areas seem to be involved but are yet to be fully mapped).
- Despite typical descriptions of MH, a familiar specific singing voice that also comments and talks to the patient is not typical of a specific disorder and has never been described in the literature until this date.
- Our patient’s CT of the brain revealed small right nucleocapsular hypodensities and bilateral external capsules of presumed vascular aetiology.
- We believe the publishing of case reports where CT of specific brain lesions are presented may help build a map of this circuitry and explain the fascinating phenomena of MH.

Acknowledgements
We thank Sara Fernandes Custódio, Ana Velosa and Bruno Silva for helping with the interpretation of the complementary diagnostic exams.

Contributors
HC-S monitored data collection, analysed the data and drafted and revised the paper. STN analysed the data and revised the paper. JR provided data collection and revised the paper. CF initiated the project, designed and monitored data collection, analysed the data and validated and revised the paper.

Funding
The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests
None declared.

Patient consent for publication
Consent obtained from parent(s)/guardian(s).

Provenance and peer review
Not commissioned; externally peer reviewed.

ORCID iD
Hugo Canas-Simião http://orcid.org/0000-0001-8100-8589