Bernardino, Jorge Fernandes RodriguesRodrigues, Mário Miguel Lucas2018-12-132018-12-132018-07-162017http://hdl.handle.net/10400.26/25338Nos últimos anos, o termo Big Data tornou-se um tópico bastanta debatido em várias áreas de negócio. Um dos principais desafios relacionados com este conceito é como lidar com o enorme volume e variedade de dados de forma eficiente. Devido à notória complexidade e volume de dados associados ao conceito de Big Data, são necessários mecanismos de consulta eficientes para fins de análise de dados. Motivado pelo rápido desenvolvimento de ferramentas e frameworks para Big Data, há muita discussão sobre ferramentas de consulta e, mais especificamente, quais são as mais apropriadas para necessidades analíticas específica. Esta dissertação descreve e compara as principais características e arquiteturas das seguintes conhecidas ferramentas analíticas para Big Data: Drill, HAWQ, Hive, Impala, Presto e Spark. Para testar o desempenho dessas ferramentas analíticas para Big Data, descrevemos também o processo de preparação, configuração e administração de um Cluster Hadoop para que possamos instalar e utilizar essas ferramentas, tendo um ambiente capaz de avaliar seu desempenho e identificar quais cenários mais adequados à sua utilização. Para realizar esta avaliação, utilizamos os benchmarks TPC-H e TPC-DS, onde os resultados mostraram que as ferramentas de processamento em memória como HAWQ, Impala e Presto apresentam melhores resultados e desempenho em datasets de dimensão baixa e média. No entanto, as ferramentas que apresentaram tempos de execuções mais lentas, especialmente o Hive, parecem apanhar as ferramentas de melhor desempenho quando aumentamos os datasets de referência.engBig DataHadoopSQL-on-HadoopQuery processingBig data analyticsExperimental evaluation of big data querying toolsmaster thesis202242943