Costa, Madalena Belmar daDelgado, António H. S.Afonso, Tomás AmorimProença, LuísRamos, Ana SofiaAzul, Ana Mano2025-09-222025-09-222021-10Belmar da Costa M, Delgado AH, Amorim Afonso T, Proença L, Ramos AS, Mano Azul A. Investigating a Commercial Functional Adhesive with 12-MDPB and Reactive Filler to Strengthen the Adhesive Interface in Eroded Dentin. Polymers. 2021; 13(20):3562. https://doi.org/10.3390/polym132035622073-4360http://hdl.handle.net/10400.26/58775To compare the adhesive interface of eroded dentin formed by a functional dental adhesive and a gold standard strategy, by testing microtensile bond strength (μTBS), hardness/elastic modulus. Permanent sound human molars were randomly allocated to four experimental groups, all subject to artificial erosion (0.05 M citric acid; 3× daily, 5 days). Groups included control Clearfil SE Bond 2 (CFSE), and experimental group Clearfil SE Protect (CFP), at two different time points-immediate (24 h) and long term (3 months–3 M). Samples were sectioned into microspecimens for μTBS (n = 8) and into 2-mm thick slabs for nanoindentation assays (n = 3). Groups CFSE_3M and CFP_3M were stored in artificial saliva. Statistical analysis included two-way ANOVA for μTBS data, while hardness/modulus results were analyzed using Kruskal–Wallis H Test (significance level of 5%; SPSS v.27.0). Although no significant differences were found between mean μTBS values, for different adhesives and time points (p > 0.05), a positive trend, with μTBS rising in the CFP_3M group, was observed. Regarding hardness, no significant differences were seen in the hybrid layer, considering the two variables (p > 0.05), while the reduced elastic modulus rose in CFP_3M when compared to 24 h. Thus, CFP shows similar mechanical and adhesive performance to CFSE in eroded dentin, although it may comprise promising long-term results. This is advantageous in eroded substrates due to their increased enzymatic activity and need for remineralization.engbiomaterialsdental adhesivedental erosioneroded dentinresin-dentin interfaceInvestigating a commercial functional adhesive with 12-MDPB and reactive filler to strengthen the adhesive interface in eroded dentincontribution to journal10.3390/polym13203562