EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN) Phys. Rev. C 98 (2018) 044905 DOI: 10.1103/PhysRevC.98.044905 CERN-EP-2018-072 November 27, 2018 Measurement of the suppression and azimuthal anisotropy of muons from heavy-flavor decays in Pb+Pb collisions at √sNN = 2.76 TeV with the ATLAS detector The ATLAS Collaboration ATLAS measurements of the production of muons from heavy-flavor decays in √sNN = 2.76 TeV Pb+Pb collisions and √ s = 2.76 TeV pp collisions at the LHC are presented. Integrated luminosities of 0.14 nb−1 and 570 nb−1 are used for the Pb+Pb and pp mea- surements, respectively, which are performed over the muon transverse momentum range 4 < pT < 14 GeV and for five Pb+Pb centrality intervals. Backgrounds arising from in-flight pion and kaon decays, hadronic showers, and mis-reconstructed muons are statistically re- moved using a template-fitting procedure. The heavy-flavor muon differential cross-sections and per-event yields are measured in pp and Pb+Pb collisions, respectively. The nuclear modification factor RAA obtained from these is observed to be independent of pT, within un- certainties, and to be less than unity, which indicates suppressed production of heavy-flavor muons in Pb+Pb collisions. For the 10% most central Pb+Pb events, the measured RAA is approximately 0.35. The azimuthal modulation of the heavy-flavor muon yields is also measured and the associated Fourier coefficients vn for n=2, 3 and 4 are given as a function of pT and centrality. They vary slowly with pT and show a systematic variation with centrality which is characteristic of other anisotropy measurements, such as that observed for inclusive hadrons. The measured RAA and vn values are also compared with theoretical calculations. © 2018 CERN for the benefit of the ATLAS Collaboration. Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license. ar X iv :1 80 5. 05 22 0v 2 [n uc l-e x] 2 6 N ov 20 18 1 Introduction Heavy quarks, especially bottom quarks, provide an important probe of the properties of the quark–gluon plasma created in high-energy nuclear (A+A) collisions [1–8]. The masses of the charm and bottom quarks are much larger than the temperatures of 200–500 MeV attained in the plasma (Ref. [9] and references therein). As a result, the heavy quarks are mostly produced early in the collision at rates that are, in principle, calculable using perturbative QCD, and their subsequent interactions with the plasma give experimentally observable signatures. At transverse momenta (pT) much greater than the mass of the bottom quark, heavy quarks are expected to lose energy similarly to light quarks but with mass-dependent modifications to the pattern of collisional and radiative energy loss [3, 10–15]. At lower transverse momenta, pT . mb, the quarks are expected to diffuse in the plasma [4, 7, 16], losing energy and partially thermalizing [1, 17]. As a result of their interactions with the collectively expanding medium, the heavy quarks may acquire an azimuthal anisotropy. Previous measurements of heavy-flavor production in A+A collisions at RHIC and the LHC, using semi-leptonic decays [18–21] and direct reconstruction of heavy-flavor mesons [22–26], have shown both substantial suppression in the yield of heavy quarks due to energy loss and significant azimuthal anisotropy. Measurements of the heavy-quark yield and azimuthal anisotropy in Pb+Pb collisions at the LHC can provide valuable constraints on plasma transport parameters, such as the heavy-quark diffusion coefficient, and potentially distinguish between weak- and strong-coupling models for heavy-quark interactions in the plasma [5, 27–31]. The yield of particles produced in hard-scattering processes in A+A collisions is often characterized using the nuclear modification factor RAA = 1 〈TAA〉 1 Nevt d2N dpTdη cent d2σpp dpTdη , (1) where η is the pseudorapidity, the numerator is the differential per-event yield in A+A collisions for a given centrality interval, the denominator is the pp differential cross-section for producing the given particles, and 〈TAA〉 represents the nuclear overlap function averaged over the centrality interval [32]. In the absence of significant modification to the nuclear parton distributions and of final-state interactions of the outgoing partons, RAA should be unity. Measurements of the production of vector bosons [33–37] in Pb+Pb collisions at the LHC have verified this expectation. In contrast, measurements of RAA for jets [38, 39] and single hadrons [40–42] have shown a centrality-dependent suppression that is understood to result from the energy loss of the parent quarks and gluons (Refs. [43–45] and references therein). Measurements of D-meson production in Pb+Pb collisions at the LHC [24] have shown a centrality- and pT-dependent suppression similar to that observed for single hadrons. A measurement of b-hadron production, via their inclusive decays to J/ψ mesons, has also shown significant suppression [46]. Separate measurements of the production of forward heavy-flavor electrons [47] and muons [20] that are predominantly produced in semi-leptonic B- and D-meson decays give RAA values that are significantly larger than those observed for inclusive hadrons. However, the b→J/ψX and forward muon measurements are statistically limited and insufficient to test theoretical calculations. The azimuthal anisotropy of particles produced in an A+A collision is often characterized by harmonic coefficients vn in a Fourier expansion of the particle yield as a function of azimuthal angle φ [48] dN dφ = 〈 dN dφ 〉 ( 1 + 2 ∑ n≥1 vn cos (n [φ − Φn]) ) , (2) 2 where Φn represents the event-plane angle for the n-th harmonic. In non-central collisions, the azimuthal anisotropy is usually dominated by the n = 2 term due to the almond-like shape of the collision geometry in the transverse plane resulting from the non-zero impact parameter. Measurements of inclusive [49–53] and identified hadron [54, 55] vn values in A+A collisions at the LHC and at RHIC show the presence of significant azimuthal anisotropies, which are well reproduced by hydrodynamic calculations. These results provide the basis for the interpretation that the medium created in heavy-ion collisions is strongly coupled. The elliptic flow of heavy-flavor hadrons depends both on the coupling of the heavy quark with the medium and on the transfer of the collective motion of the medium to the heavy-flavor hadron in the hadronization process [56]. The measurements of D-meson elliptic flow at mid-rapidity at the LHC [25, 26] give v2 values that are similar to those measured for light hadrons, while the forward- rapidity heavy-flavor v2 values measured using semi-leptonic decays to muons are significantly smaller. However, those measurements are statistically limited and, thus, do not provide stringent constraints on theoretical calculations of the heavy-flavor elliptic flow. This paper presents ATLAS measurements of muons from heavy-flavor semi-leptonic decays (heavy- flavor muons, hereafter) in pp collisions at √ s = 2.76 TeV and Pb+Pb collisions at √sNN = 2.76 TeV. The Pb+Pb data were recorded during 2011, and the pp data were recorded during 2013. The measurements are performed using data sets with integrated luminosities of 570 nb−1 and 0.14 nb−1 for pp and Pb+Pb collisions, respectively. They are performed for several intervals of collision centrality, characterized using the total transverse energy measured in the forward calorimeters, and for different muon pT intervals spanning the range 4–14 GeV. Heavy-flavor muons are statistically separated from background muons resulting from pion and kaon decays and from hadronic interactions using a “momentum-imbalance” variable (Section 3.3) that compares the momenta of the muons measured in the inner detector and muon spectrometer. Over the pT range of the measurement, the residual irreducible contamination by non- heavy-flavor muons, including contributions from J/ψ decays [57, 58], is less than 1% and is neglected in the following. The heavy-flavor muon differential per-event yields in Pb+Pb collisions and differential cross-sections in pp collisions measured over the pseudorapidity interval |η | < 1 are used to calculate the heavy-flavor muon RAA as a function of pT in different Pb+Pb centrality intervals. In addition, heavy- flavor muon vn values are measured for n = 2–4 as a function of pT and collision centrality over |η | < 2 using both the event-plane and scalar-product [59] methods. The scalar-product method has become the de facto standard procedure for vn measurements using event-plane reconstruction. However, the method introduces additional complexity to the background subtraction procedure (see Section 3.4), so results obtained using both methods are provided. The results presented in this paper provide significantly improved statistical precision over previous measurements of the suppression and the anisotropic flow of semi-leptonically decaying heavy-flavor hadrons in Pb+Pb collisions at the LHC. This paper is structured as follows. Section 2 describes the components of the ATLAS detector and trigger system used in the measurement, Section 3 describes the data analysis, Section 4 discusses the systematic uncertainties, and the results are discussed in Section 5. Section 6 provides a summary and outlook. 2 ATLAS detector The measurements presented in this paper use the ATLAS muon spectrometer (MS), inner detector (ID), calorimeter, trigger and data acquisition systems. A detailed description of these detectors and their performance in pp collisions is given in Ref. [60]. Muons are reconstructed by combining independent measurements of the muon trajectories from the ID and the MS. The ID measures charged particles within 3 the pseudorapidity interval1 |η | < 2.5 using silicon pixel detectors, silicon microstrip detectors (SCT), and a straw-tube tracker, all immersed in a 2 T axial magnetic field. A charged particle typically traverses three layers of silicon pixel detectors, four layers of double-sided microstrip sensors, and 36 straws. The ID is surrounded by electromagnetic and hadronic calorimeters that absorb efficiently the copious charged and neutral hadrons produced in Pb+Pb collisions. A muon typically loses 3 to 5 GeV of energy, depending on the muon pseudorapidity, while crossing the calorimeters. The MS surrounds the calorimeters and provides tracking for muons within |η | < 2.7 in the magnetic field produced by three air-core toroid magnet systems. Muon momenta are measured in the MS using three stations of precision drift chambers. Fast tracking detectors are used to trigger on muons in the MS. Two forward calorimeters (FCal) are placed symmetrically with respect to z = 0 and cover 3.2 < |η | < 4.9. They are composed of tungsten and copper absorbers with liquid argon as the active medium; each calorimeter has a total thickness of about 10 interaction lengths. Minimum-bias Pb+Pb collisions are identified using the zero-degree calorimeters (ZDCs) and theminimum- bias trigger scintillator (MBTS) counters [60]. The ZDCs are located symmetrically at z = ±140 m and cover |η | > 8.3. They are used only in Pb+Pb collisions where they primarily measure “spectator” neu- trons, which originate from the incident nuclei and do not scatter hadronically during the collision. The MBTS system detects charged particles over 2.1 < |η | < 3.9 using two hodoscopes of 16 counters each, placed at z = ±3.6 m. The MBTS counters provide measurements of both the pulse heights and arrival times of ionization energy depositions in each hodoscope. The ATLAS trigger system [61] consists of a first-level (L1) trigger implemented using a combination of dedicated electronics with programmable logic, and a software-based high-level trigger (HLT). Data used for this analysis were selected using a combination of minimum-bias triggers, which provided a uniform sampling of the Pb+Pb inelastic cross-section, and triggers that selected rare physics signatures such as muons. The measurements presented here are primarily obtained from muon triggers. Events from the minimum-bias triggers are used only for cross-checks. The muon triggers are formed using a combination of a L1 trigger and an HLT muon trigger whose configuration differed between Pb+Pb and pp operation. For the Pb+Pb data, the L1 trigger selected events having a total transverse energy of more than 50 GeV, and the HLT trigger selected events containing a track in the MS whose pT, when corrected for the average muon energy loss in the calorimeter, is greater than 4 GeV. In pp data, the muon trigger required a standalone muon track in the MS at L1, and a muon track reconstructed using both the ID and MS with pT > 4 GeV at the HLT. The muon trigger was unprescaled throughout the Pb+Pb run and sampled essentially all of the delivered luminosity. In the pp run, the trigger was prescaled such that it sampled ∼14% (570 nb−1) of the 4 pb−1 delivered luminosity. 1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the center of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r ,φ) are used in the transverse plane, φ being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms of the polar angle θ as η = − ln tan(θ/2). 4 3 Data analysis 3.1 Event selection Charged-particle tracks and vertices are reconstructed from hits in the ID using a track reconstruction algorithm [62] whose configuration changed between the pp and Pb+Pb measurements to account for the high hit density in heavy-ion collisions [50]. To remove non-collision backgrounds, Pb+Pb events are required to have a reconstructed primary vertex, at least one hit in each MBTS counter, and a time difference between the two MBTS time measurements of less than 5 ns; pp events are required to have at least one reconstructed primary vertex. The centrality of Pb+Pb collisions is characterized by ΣEFCalT , the total transverse energy measured in the FCal [50]. For the results presented in this paper, the minimum-bias ΣEFCalT distribution is divided into centrality intervals according to the following percentiles of the ΣEFCalT distribution ordered from the most central to the most peripheral collisions: 0–10%, 10–20%, 20–30%, 30–40%, and 40–60%. A Glauber Monte-Carlo analysis [63] is used to estimate 〈TAA〉 for each of the centrality intervals [38]. The results are provided in Table 1. Table 1: The 〈TAA〉 values and their systematic uncertainties [38] in each centrality interval used in this analysis. For the 40–60% centrality interval, the 〈TAA〉 values are obtained by averaging the values for 40–50% and 50–60% centrality intervals from Ref. [38]. Centrality interval [%] 〈TAA〉 [mb−1] 0–10 23.45 ± 0.37 10–20 14.43 ± 0.30 20–30 8.73 ± 0.26 30–40 5.04 ± 0.22 40–60 2.02 ± 0.15 3.2 Muon reconstruction Muons in this analysis are formed by combining tracks reconstructed in the MS [57] with the tracks measured in the ID. The associated ID tracks are required to satisfy criteria for the number of hits in the SCT and pixel detectors which are the same for the pp and Pb+Pb data, but which are optimized for the Pb+Pb analysis [50]. In particular, for both data sets, ID tracks are required to have transverse and longitudinal impact parameters relative to the reconstructed primary vertex of less than 5 mm and to have a momentum p > 3 GeV. The requirements on the longitudinal and transverse impact parameters are relaxed to 5 mm, compared to the 1 mm (or 1.5 mm) typically used in heavy-ion analyses [50, 52], to allow selection of muons from off-vertex heavy-flavor decays. The ID tracks are also required to have at least one pixel hit, with the additional requirement of a hit in the first pixel layer when one is expected,2 at least seven SCT hits, and at most one hit that is expected but not found in the pixel and SCT detectors taken together. The transverse momentum measured in the MS (pMST ) is required to be greater than 1.2 GeV for both the pp and Pb+Pb data. In the Pb+Pb analysis, this selection removes muons for which the Pb+Pb trigger efficiency is less than 50%. 2 A hit is expected if the extrapolated track crosses an active region of a pixel module that has not been disabled. 5 The results presented here use muons having 4 < pT < 14 GeV and having |η | < 1 for the heavy- flavor-suppression analysis or |η | < 2 for the flow measurements. The lower limit of the pT range is constrained by the pT dependence of the muon trigger and reconstruction efficiencies, while the upper limit is determined by the number of events available in the Pb+Pb data. For the RAA measurements, a muon η interval of |η | < 1 is chosen, as the muon trigger and reconstruction have optimal performance over this η range. The η range is extended to |η | < 2 for the vn measurements, as they are not sensitive to the effects of trigger and tracking efficiency. A total of 9.2 million (1.8 million) muons are reconstructed within these kinematic ranges from 8.7 million (1.8 million) events recorded using the Pb+Pb (pp) muon triggers. The performance of the ATLAS detector and offline analysis in measuring muons in pp collisions is evaluated by aGeant 4 [64] simulation of theATLASdetector [65] usingMonteCarlo (MC) √ s = 2.76TeV pp events produced with the Pythia event generator [66] (version 6.423 with parameters chosen according to the AUET2B set of tuned parameters [67]). The reconstruction performance in Pb+Pb collisions is evaluated by “overlaying” simulated Pythia pp events on minimum-bias Pb+Pb events. In this overlay procedure, the simulated hits are combined with the data from minimum-bias events to produce the final sample. The minimum-bias Pb+Pb events used in the overlay procedure were recorded by ATLAS during the same data-taking period as the data used in this analysis. For both the pp and Pb+Pb measurements, the muon reconstruction efficiency increases by about 30% from pT = 4 GeV to pT = 6 GeV, above which it is approximately constant at 0.80 and 0.77 for the pp and Pb+Pb data, respectively. The Pb+Pb muon reconstruction efficiency is independent of the centrality within uncertainties. The Pb+Pb muon trigger efficiency is measured for fully reconstructed muons using the minimum-bias Pb+Pb data set. The efficiency is evaluated as the fraction of reconstructed muons for which the HLT finds a matching muon with pT > 4 GeV. It is observed to be independent of centrality, within statistical uncertainties, and increases from about 0.6 at pT = 4 GeV to about 0.8 at 6 GeV, above which it is approximately constant. The pp muon trigger efficiency is similarly evaluated using pp events selected by a set of minimum-bias triggers. The efficiency increases from 0.40 for pT = 4 GeV to 0.75 for pT = 12 GeV. 3.3 Heavy-flavor-suppression measurement The muons measured in the pp and Pb+Pb data sets contain background from in-flight decays of pions and kaons, muons produced from the decays of particles produced in hadronic showers in the material of the detector, and mis-associations of ID and MS tracks. Previous studies have shown that the signal and background contributions to the reconstructed muon sample can be discriminated statistically [57]. This analysis relies solely on the fractional momentum imbalance ∆p/pID, which quantifies the difference between the ID and MS measurements of the muon momentum after accounting for the energy loss of the muon in the calorimeters. It is defined as ∆p pID = pID − pMS − ∆pcalo(p, η, φ) pID , where pID and pMS represent the reconstructed muon momenta from the ID and MS, respectively, and ∆pcalo represents themomentum- and angle-dependent averagemomentum loss ofmuons in the calorimeter obtained from simulations. Muons resulting from background processes typically have pMS values smaller than would be expected for a muon produced directly in pp or Pb+Pb collisions or via the decays of heavy- flavor hadrons. This is because the backgroundmuons frompion/kaon decays or fromhadronic interactions 6 ID p/p∆ 0.4− 0.3− 0.2− 0.1− 0 0.1 0.2 0.3 0.4 0.5 0.6 IDp/p∆d µ Nd µ N1 0 2 4 6 8 SimulationATLAS = 2.76 TeVNNs < 6 GeV T p5 < | < 1η| Pb+Pb 0-60% signal background pp signal background Figure 1: Signal and background template distributions in pp collisions (square points) and Pb+Pb collisions (circular points) in the 0–60% centrality interval for muons having 5 < pT < 6 GeV and |η | < 1. The signal and background distributions are separately normalized such that their integral is unity. For clarity, the background distribution is binned more coarsely. in the calorimeter have, on average, smaller pT compared to the parent particle. As a result, background muons are expected to have ∆p/pID > 0. Distributions for ∆p/pID are obtained from the simulated samples separately for signal muons and for background muons. The signal muons include muons directly produced in electromagnetic decays of hadrons, in decays of τ-leptons, in decays of W and Z bosons, in decays of top quarks, and in semi- leptonic decays of heavy-flavor hadrons; this last contribution dominates the signal sample, contributing about 99% of the muons over the pT range measured in this analysis (Ref. [57] and references therein). The different contributions to the background – pion decays in flight, kaon decays in flight, muons produced by secondary interactions of prompt particles, and mis-associations – are evaluated separately. Figure 1 shows MC distributions of ∆p/pID for signal and background muons having 5 < pT < 6 GeV for Pb+Pb collisions in the centrality range 0–60% and for pp collisions. The ∆p/pID distribution for signal muons is centered at zero while the distribution for background muons is shifted to positive values. The signal distributions show only modest differences between pp and Pb+Pb collisions. Similarly, when making separate templates for different Pb+Pb collision centralities, a weak dependence of the signal templates on centrality is observed. The background ∆p/pID distributions are much broader and are insensitive to the centrality-dependent effects seen in the signal distributions. A template-fitting procedure is used to estimate statistically the signal fraction for each kinematic and centrality selection used in the analysis. The measured ∆p/pID distribution is assumed to result from a 7 ID p/p∆ 0.2− 0 0.2 0.4 IDp/p∆d µ Nd µ N1 0 2 4 6 8 0-10% < 5.5 GeV T p5 < ATLAS -1Pb+Pb, 0.14 nb = 2.76 TeVNNs | < 1η| ID p/p∆ 0.2− 0 0.2 0.4 IDp/p∆d µ Nd µ N1 0 2 4 6 8 0-10% < 12 GeV T p10 < Data Signal Background Fit template ID p/p∆ 0.2− 0 0.2 0.4 40-60% < 5.5 GeV T p5 < ATLAS -1Pb+Pb, 0.14 nb = 2.76 TeVNNs | < 1η| ID p/p∆ 0.2− 0 0.2 0.4 40-60% < 12 GeV T p10 < Data Signal Background Fit template p/ loss pδ 0.2− 0 0.2 0.4 < 5.5 GeV T p5 < -1 , 570 nbpp = 2.76 TeVs | < 1η| ATLAS ID p/p∆ 0.2− 0 0.2 0.4 Data Signal Background Fit template < 12 GeV T p10 < Figure 2: Examples of template fits to Pb+Pb and pp data. The top panels show results for 5 < pT < 5.5 GeV and the bottom panels show results for 10 < pT < 12 GeV. The left, middle, and right panels show results for Pb+Pb 0–10%, Pb+Pb 40–60%, and pp, respectively. The black points represent the data. The dotted and dashed lines represent the signal and background template distributions weighted by f sig and (1 − f sig), respectively (see text) and the continuous lines represent the summed template distributions. combination of signal and background distributions 1 Nµ dNµ d∆p/pID = f sig dP sig d∆p/pID + ( 1 − f sig) dPbkg d∆p/pID , where Nµ is the total number of muons in the sample, dPsig/d∆p/pID and dPbkg/d∆p/pID represent the signal and background ∆p/pID probability distributions, respectively, and f sig represents the signal fraction. For Pb+Pb data, centrality-dependent templates are used for the signalwhile centrality-integrated templates are used for the background. The latter is motivated by the observed centrality independence of the background templates and the limited size of the background sample. Template fits are performed using binned χ2 fits that account for the statistical precision of the signal and background templates. The fits are performed using MINUIT [68] with f sig as the free parameter. The uncertainties from the fits are used as statistical uncertainties of the yields and propagated into the final results. Example template fits are shown for two muon pT intervals in Figure 2 for Pb+Pb events in the 0–10% and 40–60% centrality intervals and for pp data. As shown in Figure 2, the measured ∆p/pID distributions are well described by a combination of the signal and background templates, and this holds for all studied kinematic and centrality intervals. The signal fractions f sig obtained from the template fits using these intervals are shown in Figure 3 for the Pb+Pb and pp data. The signal fractions increase with pT for pT > 5 GeV, indicating that at higher pT a larger fraction of the reconstructed muons are heavy-flavor (HF) muons. The increase in f sig at low pT results from the trigger, which is less efficient for background muons that have low pMST . Such an increase 8 [GeV] T p4 6 8 10 12 14 Si gn al fr ac tio n 0.4 0.6 0.8 1 0-10% -1Pb+Pb, 0.14 nb = 2.76 TeVNNs | < 1η| ATLAS [GeV] T p 4 6 8 10 12 14 Si gn al fr ac tio n 0.4 0.6 0.8 1 30-40% [GeV] T p 4 6 8 10 12 14 Si gn al fr ac tio n 0.4 0.6 0.8 1 10-20% [GeV] T p 4 6 8 10 12 14 Si gn al fr ac tio n 0.4 0.6 0.8 1 40-60% [GeV] T p 4 6 8 10 12 14 Si gn al fr ac tio n 0.4 0.6 0.8 1 20-30% [GeV] T p 4 6 8 10 12 14 0.4 0.6 0.8 1 -1 , 570 nbpp = 2.76 TeVs | < 1η| Figure 3: Signal fraction values obtained from template fits to the Pb+Pb and pp data as a function of the muon pT. Results are shown for different Pb+Pb centrality intervals and for pp collisions in the bottom right panel. The error bars correspond to statistical uncertainties only. is not observed when repeating this analysis using the minimum-bias Pb+Pb data set. This increase in the f sig due to the trigger does not affect the measurement, as is demonstrated by studies of variations in the pMST criterion in Section 4.1. With the f sig obtained from the template fits, the pp differential cross-section for producing heavy-flavor muons is calculated according to d2σHFµ dpTdη = 1 L ∆Nµ f sig ∆pT∆η 1 εtrigεrec , (3) where L is the integrated luminosity of the pp measurement, ∆pT is the width of the given pT interval, ∆η = 2 is the size of the pseudorapidity interval, ∆Nµ represents the number of muons in the given pT and η intervals, and εtrig and εrec represent the trigger and reconstruction efficiencies, respectively. The luminosity is calibrated using a set of beam-separation scans performed in February 2013. It has a relative uncertainty of 3.1% that was derived following a methodology similar to that detailed in Ref. [69]. The Pb+Pb differential per-event yields for producing heavy-flavor muons are calculated according to 1 Nevt d2NHFµ dpTdη cent = 1 Ncentevt ∆Ncentµ f sig ∆pT∆η 1 εtrigεrec , (4) where Ncentevt is the number of Pb+Pb collisions in a given centrality interval, ∆Ncentµ represents the number of total muons with |η | < 1 measured in the given pT and centrality interval, f sig represents the corresponding signal fraction obtained from the template fits, and εtrig and εrec represent the trigger and reconstruction efficiencies, respectively. 9 3.4 Azimuthal anisotropy measurement The vn measurements additionally require determination of the event-plane (EP) angles Φn (Eq. (2)). However, due to detector acceptance effects and finite particle multiplicity in an event, the measured EP angles, denoted Ψn, fluctuate event-by-event around the true EP angles [48]. The “observed” vn, vobsn , is obtained by measuring the distribution of the particle directions relative to the Ψn planes: dN dφ = N0 [ 1 + 2 ∑ n≥1 vobsn cos(n(φ − Ψn)) ] . (5) The vobsn are smaller in magnitude than the true vn because they are calculated around the Ψn planes rather than the Φn planes. To account for this, the vobsn are corrected by the EP resolution factor Res{nΨn}, which accounts for the smearing of Ψn relative to Φn [48]: vn = vobsn Res{nΨn}, Res{nΨn} = 〈cos(n(Ψn − Φn))〉evts, (6) where, the 〈...〉evts indicates averaging over all events in a given centrality class. In this analysis, the Ψn angle is determined using the flow vector or “q-vector” method [48], in which the q-vector is calculated from the ET deposited in the FCal according to: qn,x = ΣET,i cos(nφi) − 〈ΣET,i cos(nφi)〉evts ΣET,i , (7) qn,y = ΣET,i sin(nφi) − 〈ΣET,i sin(nφi)〉evts ΣET,i , where the sum is over all the calorimeter towers3 in the FCal, ET,i is the transverse energy deposited in the ith tower, and φi denotes the azimuthal angle of the position of the center of the tower. The event-averaged terms 〈ΣET,i cos(nφi)〉evts and 〈ΣET,i sin(nφi)〉evts are subtracted in order to remove detector effects [70]. From the qn-vectors, the EP angles Ψn, are determined as [71] tan(nΨn) = qn,y qn,x . The parameter Res{nΨn} is determined by the two-subevents (2SE) method [48]. In the 2SE method, the signal from a detector used to measure the event plane is divided into two “subevents” covering equal pseudorapidity ranges in opposite η hemispheres, such that the two subevents nominally have the same resolution. The FCal detectors located at positive and negative η, FCalP and FCalN, provide such a division. The resolution of the FCalP(N) is calculated from the correlation between the two subevents Res(nΨP(N)n ) = √ 〈cos n(ΨPn − ΨNn )〉, where ΨP(N)n is the event-plane angle determined from the positive (negative) side of the FCal. From the subevent resolution the full FCal resolution can be determined by the procedure described in Ref. [48]. The Res{nΨn} for the FCal and their associated systematic uncertainties were determined in a previous ATLAS analysis [52]. Those values and uncertainties are directly used in this paper. Depending on the centrality class, the EP resolution factor for the FCal varies between 0.7–0.9, 0.3–0.65, and 0.2–0.4 for 3 Calorimeter towers are localized groups of calorimeter cells that have a δη × δφ segmentation of 0.1 × 0.1. 10 v2, v3 and v4, respectively. The uncertainties in the EP resolution factor are less than 3%, 4% and 6% for v2, v3 and v4, respectively, for all the centrality classes used in this analysis. The heavy-flavor muon vobsn values are measured by evaluating the yields differentially relative to the Ψn plane. For this, the template-fitting procedure is repeated in intervals of n|φ − Ψn | for each pT and centrality interval. Utilizing the n-fold symmetry of the Ψn plane and the fact that cos(n(φ − Ψn)) is an even function, it is sufficient to bin only over the interval (0, pi) in n|φ − Ψn |. Four intervals of n|φ − Ψn | [(0,pi/4), (pi/4,pi/2), (pi/2,3pi/4), and (3pi/4,pi)] are used. The same signal and background templates are used for the four n|φ−Ψn | intervals in a given pT and centrality interval. As a result, there is a significant correlation between the statistical uncertainties of the signal fractions measured in the four cos(n(φ−Ψ2)) intervals. This correlation is accounted for in the statistical uncertainties of the final vn values. Figure 4 shows examples of the differential yields of heavy-flavor muons obtained from the template fits as a function of 2|φ − Ψ2 | for two centrality and two pT intervals. A clear dependence of the yields on 2|φ − Ψ2 | can be observed, with a larger yield in the “in-plane” direction (2|φ − Ψ2 | ∼ 0) compared to the “out-of-plane” direction (2|φ − Ψ2 | ∼ pi), implying a significant v2 signal. The differential yields are fitted with a second-order Fourier function of the form in Eq. (5) to obtain the vobs2 values. In the fits, the χ2 minimization takes into account the correlations between the statistical uncertainties of the yields in the different 2|φ − Ψ2 | bins. These fits are indicated by the continuous lines in Figure 4. The vobs2 values are then corrected to account for the EP resolution (Eq. (6)) for the final results presented in Section 5. One drawback of the EP method is that there is an ambiguity in the interpretation of the vn values obtained from it (from here on the vn values obtained from the event-plane method are denoted by vEPn ). In the limit of perfect EP resolution, Res{nΨn} → 1, vEPn → 〈vn〉, while in the limit of poor resolution, Res{nΨn} → 0, vEPn → √ 〈v2n〉 where the 〈...〉 indicates an average over all events [59]. In general, the vn values measured with the EP method lie somewhere between 〈vn〉 and 〈 √ v2n〉, depending on the value of the resolution. For this reason, the scalar-product (SP) method is considered to be a superior measurement technique, as it alwaysmeasures the r.m.s. vn value, i.e. √ 〈v2n〉 [59]. The ideal SPmethod entails weighting the contribution of each measured signal muon by the magnitude of the q-vector (Eq. (7)) measured in the FCal, giving vSPn = 〈qn cos(n(φ − Ψn))〉evts ResSP{nΨn} , (8) where ResSP{nΨn} is the resolution for the SP method, given by ResSP(nΨn) = √ 〈qPnqNn cos n(ΨPn − ΨNn )〉, where qP(N)n is the magnitude of the nth-order q-vector measured in the positive z (negative z) side of the FCal. Previous ATLAS measurements for inclusive charged particles show that vEPn values differ by less than 5% from the r.m.s. vn values for v2, and harmonics of order n ≥ 3 are consistent with the r.m.s. vn within systematic uncertainties [72]. However, Eq. (8) cannot be directly used in the present analysis, since a priori it is not known whether a reconstructed muon is a signal or background muon; the number of signal muons is statistically extracted from the momentum imbalance distributions. Instead, the implementation of the SP method follows quite closely the EP method. The template fits are done in four intervals of n|φ − Ψn | with each muon weighted with the measured qn in that event. These fits give the qn-weighted signal muon yields in each n|φ −Ψn | interval. These weighted yields are then fitted with nth-order Fourier functions, similar to Figure 4, to obtain the observed SP vn values, which are then corrected by ResSP{nΨn} to obtain the vSPn , presented later in Section 5. 11 |2Ψ - φ2| 0 0.5 1 1.5 2 2.5 3 |) 2 Ψ -φ d(2 | µ Nd µ N1 0.9 1 1.1 10-20% | < 2η| < 4.5 GeV T p4 < = 2.76 TeVNNs -1Pb+Pb, 0.14 nb ATLAS |2Ψ - φ2| 0 0.5 1 1.5 2 2.5 3 |) 2 Ψ -φ d(2 | µ Nd µ N1 0.9 1 1.1 40-60% | < 2η| < 4.5 GeV T p4 < = 2.76 TeVNNs -1Pb+Pb, 0.14 nb ATLAS |2Ψ - φ2| 0 0.5 1 1.5 2 2.5 3 |) 2 Ψ -φ d(2 | µ Nd µ N1 1 1.1 10-20% | < 2η| < 10 GeV T p8 < = 2.76 TeVNNs -1Pb+Pb, 0.14 nb ATLAS |2Ψ - φ2| 0 0.5 1 1.5 2 2.5 3 |) 2 Ψ -φ d(2 | µ Nd µ N1 0.9 1 1.1 40-60% | < 2η| < 10 GeV T p8 < = 2.76 TeVNNs -1Pb+Pb, 0.14 nb ATLAS Figure 4: Examples of heavy-flavor muon yields, expressed in thousands of muons, as a function of 2|φ − Ψ2 | in intervals of pi/4. The left and right columns show results for the 10–20% and 40–60% centrality intervals, respectively, and the top and bottom rows correspond to 4.0 < pT < 4.5 GeV and 8 < pT < 10 GeV, respectively. The error bars on the data points show statistical uncertainties from the fits. There are significant bin-to-bin correlations between the statistical uncertainties due to the use of the same signal and background templates in all 2|φ − Ψ2 | intervals. The continuous lines indicate the results of fits of the data to Eq. (5). While the SP method has advantages over the EP method, only a modified version of the SP method can be used in the present analysis. Thus, the results obtained from both the SP and EP methods are presented. 3.5 Jet bias in the vn measurement The heavy-flavormuonsmeasured in this analysis often result from heavy-flavor jets that have an associated back-to-back recoil jet. If the recoil jet is in the FCal, it can bias the orientation of the Ψn to be aligned with the azimuthal angle of the muon, yielding a larger measured vn. This “jet bias effect” needs to be estimated and corrected for in the measurement. The magnitude of this effect is estimated using the simulated-data overlay events described in Section 3.2, where Pythia-generated events are overlaid on minimum-bias Pb+Pb data. The overlay is done independently of the Ψn angles and, thus, should yield a zero vn value when the analysis procedure used in the data is applied to the simulated events. Any systematic deviation from vn = 0 seen in the simulated data is, then, a result of jet bias. The procedure used to evaluate the jet bias in vn values is as follows. 12 The presence of the recoil jet biases the observed q-vector in the FCal as4: qBiasedn = qne inΨn + keinφ Jet , where the first term on the right is the unbiased q-vector, which only has the natural statistical smearing. The second term on the right is the bias introduced by the recoil jet, which shifts the event-plane angle to be aligned with the recoil jet direction. The factor k represents the strength of the bias and may depend on the pT of the recoil jet as well as the centrality, and φJet is the direction of the jet. Since the recoil jet is nominally back-to-back with the muon, its direction can be written as: φJet = φµ + pi + δ, where φµ is the azimuthal angle of the muon and δ represents event-by-event fluctuations in the jet direction. This bias affects the numerator in the SP method (Eq. (8)); the resolution (denominator in Eq. (8)) is not affected by the bias, as the resolution is calculated using minimum-bias events and not from events that are triggered by muons. The dot product between the muon’s transverse direction and the biased q-vector, averaged over many events, (numerator of Eq. (8)) now becomes 〈einφµ (qne−inΨn + ke−in(φµ+pi+δ))〉evts = 〈einφµqne−inΨn 〉evts + 〈ke−in(pi+δ)〉evts. (9) The first term on the right is the numerator of Eq. (8) for no bias, and the second term is the bias, which conveniently separates out as an additive contribution. The second term on the right of Eq. (9) corrected by ResSP{nΨn} is the jet bias in vSPn . The bias determined in this manner is independent of pT within statistical errors. Themagnitude of the bias varies with centrality. It is smallest in the most central events – where the underlying event is quite large, and the additional energy deposited by the jet does not cause a significant perturbation – and increases with decreasing centrality. For v2, the pT-averaged value of this bias is 0.0025 in the 0–10% centrality interval; it increases to 0.011 in the 40–60% centrality interval. For comparison, the v2 at pT = 4 GeV in the 0–10% and 40–60% centrality intervals is about 0.04 and 0.07, respectively. Because the jet yield is suppressed by as much as a factor of two in Pb+Pb collisions [38], only half of this estimated bias is applied as a correction. Half of this estimated bias is also conservatively taken as the systematic uncertainty of the correction. In principle, the jet bias also affects the RAA measurements since the correlated jet, if it falls within the FCal acceptance, also alters the centrality interval to which the event is assigned. However, this effect, estimated from the simulated-data overlay sample, is negligible compared to the systematic uncertainties in the RAA measurement (Section 4.1), and corrections for it are not applied. 4 Systematic uncertainties 4.1 Yield, cross-section, and RAA systematic uncertainties The measurements of the heavy-flavor muon differential cross-sections and per-event yields are subject to systematic uncertainties arising from the muon-trigger selection, muon-reconstruction efficiencies, the template-fitting procedure, muon pT resolution, and the pp luminosity. They are described below. Where appropriate, the uncertainties are smoothed as a function of pT, to reduce the statistical fluctuations in 4 In this section, the two-dimensional q-vector is represented using complex numbers [73]. 13 the uncertainty estimates. The systematic uncertainties for the Pb+Pb data do not show any significant variation with collision centrality. The systematic uncertainty in the Pb+Pb muon-trigger efficiency is evaluated by varying the selections applied to the offline-reconstructed muons in the minimum-bias reference sample and re-evaluating the trigger efficiency. The resulting changes in the trigger efficiency are less than 0.5% over 4 < pT < 14GeV and are taken as the estimate of the systematic uncertainty in εtrig. The uncertainty in the ppmuon-trigger efficiency is evaluated similarly, and is less than 2.5% for pT < 6 GeV and less than 1.5% for pT > 6 GeV. The systematic uncertainty associated with the muon-reconstruction efficiency is evaluated by varying the muon selections, evaluating the reconstruction efficiency for the new selections, and repeating the analysis with the updated muon selection and reconstruction efficiency. This uncertainty is less than about 4% for the pp data and less than about 2.5% for the Pb+Pb data. Separately, the minimum pMST (default value of 1.2 GeV, Section 3.2) is varied from 0.5 GeV to 1.5 GeV, and the entire analysis is repeated. This variation affects the template fitting but also is sensitive to potential systematic uncertainties in the muon reconstruction and trigger efficiencies. The change in the Pb+Pb muon yields from varying the minimum pMST , taken as a systematic uncertainty in the heavy-flavor muon yields, decreases with pT from ∼10% to ∼1.5% over the measured pT range. For the pp cross-section measurements, the systematic uncertainty decreases with pT from ∼11.5% to ∼3%. The systematic uncertainty associated with the pMST criterion is somewhat correlated with the systematic uncertainty associated with the trigger efficiency; however, they are conservatively treated as independent uncertainties. Systematic uncertainties resulting from the construction of the templates, particularly the background template, are evaluated by changing the relative proportions of different background contributions. The pion and kaon decay-in-flight components of the background are separately increased by a factor of two and then separately decreased by a factor of two, as motivated by differences observed in the kaon to pion yields between Pythia – which is used to generate the MC templates – and data [74]. For each variation, the template fitting is performed, and a new value for f sig is obtained. The average of the unsigned differences between the varied and nominal f sig values is taken as the systematic uncertainty in the template fitting due to the background composition. This is less than 0.5% over the pT range of the measurement for both the Pb+Pb and pp data. In order to account for possible inconsistencies between the data andMC templates that may arise from the effect of the trigger, or other factors that may not be properly accounted for in theMC simulation, a separate systematic uncertainty in the template-fitting method is estimated using a “cut-and-correct” procedure applied to the ∆p/pID distributions. In this procedure, the fraction of muons having ∆p/pID < ∆p/pID |cut, f <, is measured in the data in each centrality and pT interval. This fraction provides an estimate of the signal muon fraction, but it must be corrected for true muons having ∆p/pID > ∆p/pID |cut (inefficiency) and background muons having ∆p/pID < ∆p/pID |cut (fakes). The corrections are obtained from the MC signal and background ∆p/pID distributions and are expressed in terms of the efficiencies, εtrue and εbkg, for true and backgroundmuons, respectively, to pass the p/pID < ∆p/pID |cut. In terms of these efficiencies, f < is given by f < = f sigεtrue + ( 1 − f sig ) εbkg. Inverting this equation, the signal fraction estimated using the cut-and-correct procedure is f sig = f < − εbkg εtrue − εbkg . 14 Table 2: Relative systematic uncertainties in the heavy-flavor muon RAA, quoted in percent, for selected pT intervals. pT interval 4 < pT < 4.5 GeV 6 < pT < 7 GeV 10 < pT < 12 GeV Muon selection [%] 2.5 4 4 pMST selection [%] 7.5 2 2 Background template variation [%] 0.5 0.5 0.5 Template fitting [%] 13 7 5 Efficiency [%] 2.5 1.5 1.5 If the MC exactly describes the signal and background ∆p/pID distributions in the data, then the cut-and- correct f sig values will be identical to the signal fractions obtained from the template fitting. Differences from the template-fit signal fractions quantify the impact of inaccuracies in the MC templates and are taken as a systematic uncertainty. The cut-and-correct f sig values were evaluated using ∆p/pID |cut = 0.1. The obtained signal fractions were found to be systematically higher than the results from the template fits at both low and high pT and in both the pp and Pb+Pb data. The relative difference is largest in the lowest pT interval where it is ∼11% and 6% for the pp and Pb+Pb data, respectively. It decreases with increasing pT, and for the highest pT interval, is ∼6% and 3% for the pp and Pb+Pb data, respectively. The pp cross-sections and Pb+Pb per-event yields are not corrected for any bin migrations that result from the muon momentum resolution. An evaluation of MC bin-by-bin correction factors gives values that are typically within 1% (2%) of unity for pp (Pb+Pb) data. These corrections are sufficiently small that they are not applied to the data. However, the deviations from unity are included in the systematic uncertainties of the cross-sections and per-event yields. The measured pp cross-section has an additional normalization systematic uncertainty of 3.1% due to uncertainties in the integrated luminosity. For the RAA measurement, the systematic uncertainties from the pp cross-section and Pb+Pb per-event yields are propagated as if they are correlated, i.e. the systematic variations are simultaneously performed in the pp and Pb+Pb data and the change in the RAA value is taken as the systematic uncertainty. Besides the systematic uncertainties from the pp cross-section and Pb+Pb per-event yields, additional systematic uncertainties in the RAA measurement come from theoretical uncertainties in 〈TAA〉, which are listed in Table 1. Table 2 summarizes the final experimental systematic uncertainties in RAA. The total uncertainty is obtained by adding the individual uncertainties in quadrature. 4.2 Systematic uncertainties in vn The sources of the systematic uncertainties in the vn measurements are primarily the same as those in the RAA measurements (Section 4.1). However, several sources of systematic uncertainty that affect RAA do not have a significant effect on the vn values. The vn measurements are independent of the trigger and tracking efficiencies. While these efficiencies have an impact on the absolute muon yields, the vn values, which measure the relative or fractional modulation in yields, are insensitive to them. Therefore, the uncertainties in the efficiencies do not have any effect on the vn measurements. Varying the muon selection as described in Section 4.1 changes the measured value of v2 by (1–2)×10−3 below pT of 6 GeV. The pMST criterion variation changes the measured value of v2 by (0.5–1)×10−3 for pT < 6 GeV. At higher pT the effect of this criterion on v2 is about 0.2 × 10−3. For v3 and v4 the effect of the pMST criterion is 15 (0.5–1)×10−3 across the measured pT range. The effects of the muon selection and the pMST criterion are evaluated not just by applying the selection in the data but also by rebuilding the templates in the MC simulation while applying the variations, and then repeating the entire analysis. The variation in the shape of the background template, when varying the relative contribution of the pion and kaon backgrounds, results in variations in the vn values that are less than 0.5 × 10−3 across most of the centrality and pT ranges. The systematic uncertainty in vn due to pT-resolution effects is estimated to be less than 1% (relative) for pT < 10 GeV. This estimate is obtained by first determining the pT resolution using MC simulation (Section 3.2), and then evaluating the change in the v2 values when smearing the pT of the reconstructed muons by this resolution. The uncertainty arising from the pT resolution is treated as a fractional uncertainty; since if vn changes, then the pT resolution effects that result in migration of muons from one pT interval to an adjacent one also increase proportionally. For pT > 10 GeV, the systematic uncertainties from all the above sources are partially correlated with the statistical uncertainties, and are thus somewhat larger. Additional systematic uncertainties that affect only the vn but not the RAAmeasurements are the uncertainty in the EP resolution for Ψn and the jet bias correction discussed in Section 3.4. The uncertainty in the EP resolution is a relative uncertainty and depends only on the centrality. It varies between 1% and 5.5% depending on the harmonic and centrality. The systematic uncertainty associated with the jet bias correction is the leading uncertainty in the measurement. The absolute value of this uncertainty depends on the centrality and the harmonic order but is independent of pT. It increases monotonically from central to peripheral events and is much larger for v3 and v4 than for v2. Table 3 summarizes the systematic uncertainties for the vn in three different pT ranges and for two centrality intervals. The uncertainties associated with the pT resolution and EP resolution are intrinsically fractional uncertainties and are listed as percentages. All other uncertainties are listed as absolute values. 16 Table 3: Systematic uncertainties in the heavy-flavor muon vn for selected pT and centrality intervals. The values are for the EP method and are quoted either as absolute values or in percent. They are averaged over pT intervals that are larger than the intervals used for the measurement. pT interval 4 < pT < 5 GeV 6 < pT < 10 GeV 10 < pT < 14 GeV Centrality 0–10% 40–60% 0–10% 40–60% 0–10% 40–60% v2 pMST selection [10 −3] 0.6 1.0 0.2 0.3 0.2 0.3 Muon selection [10−3] 1.0 1.2 2.0 3.0 2.0 3.0 Background template variation [10−3] 0.1 0.5 0.1 0.5 0.1 0.5 Template fitting [10−3] 0.1 0.1 0.1 0.1 0.1 0.1 Jet bias correction [10−3] 1.2 5.5 1.2 5.5 1.2 5.5 pT resolution [%] 1.0 1.0 1.0 0.4 0.6 0.6 EP resolution [%] 3.7 3.3 3.7 3.3 3.7 3.3 v3 pMST selection [10 −3] 0.3 0.2 0.3 0.2 0.3 0.2 Muon selection [10−3] 0.8 3.0 0.8 3.0 0.8 3.0 Background template variation [10−3] 0.5 0.5 0.5 0.5 0.5 0.5 Template fitting [10−3] 0.1 0.1 0.1 0.1 0.1 0.1 Jet bias correction [10−3] 1.7 11.0 1.7 11.0 1.7 11.0 pT resolution [%] 1 1 1 1 1 1 EP resolution [%] 3.3 5.4 3.3 5.4 3.3 5.4 v4 pMST selection [10 −3] 0.5 0.8 0.5 0.8 0.5 0.8 Muon selection [10−3] 0.8 0.6 0.8 0.6 2.0 2.0 Background template variation [10−3] 0.2 0.5 0.2 0.5 0.2 1.5 Template fitting [10−3] 0.1 0.1 0.1 0.1 0.1 0.1 Jet bias correction [10−3] 1.8 15 1.8 15 1.8 15 pT resolution [%] 1 1.0 1.0 1.0 1.0 1.0 EP resolution [%] 4.1 5 4.1 5 4.1 5 5 Results 5.1 Heavy-flavor muon RAA Figure 5 shows the measured heavy-flavor muon cross-sections, calculated via Eq. (3), in the √ s = 2.76 TeV pp data as a function of the muon pT. The error bars show statistical uncertainties resulting from combining the statistical uncertainties of ∆Nµ and f sig. The measured cross-sections are compared with fixed-order plus next-to-leading-logarithm (FONLL) [75–78] calculations using CTEQ 6.6 PDFs [79]. The FONLL calculations are based on three main components: 1) the heavy-quark production cross- section calculated in perturbative QCD by matching the fixed-order next-to-leading-order (NLO) terms with the next-to-leading-logarithms (NLL) high-pT resummation, 2) the non-perturbative heavy-flavor fragmentation functions determined from e+e− collisions and extracted in the same framework, and 3) the decays of the heavy hadrons to leptons using decay tables and form factors from B-factories. The middle panel of Figure 5 presents the ratios of the measured and FONLL cross-sections. The FONLL calculation agrees with the data within systematic uncertainties. The individual contributions of the bottom and charm quarks to the heavy-flavor muon cross-section obtained from the FONLL calculations are compared in the lower panel of Figure 5. It is seen that at 4 GeV the contribution of the bottom quark to the muon cross-section is about 40% of that of the charm quark. The relative contribution increases monotonically 17 with the muon pT, and at pT = 14 GeV, the contributions from bottom and charm decays are comparable. Figure 6 shows the differential per-event heavy-flavor muon yields in Pb+Pb collisions (Eq. (4)) scaled by the corresponding 〈TAA〉 for the centrality intervals in this analysis. The statistical uncertainties are the combined statistical uncertainties of ∆Nµ and f sig. Figure 6 also compares the 〈TAA〉 scaled yields to the measured pp cross-section. There are significant differences between the scaled Pb+Pb yields and the pp cross-section, which monotonically increase with increasing centrality. The heavy-flavor muon RAA is calculated according to Eq. (1) using the results in Figure 6 and is shown in Figure 7. The parameter RAA does not depend on pT within the uncertainties of the measurement. This is of note because the suppression of bottom and charm quarks in the quark–gluon plasma (QGP) [GeV] T p 4 6 8 10 12 14 ] - 1 G eV × [nb ηd Tpd µ H F σ2 d 1 10 210 310 ATLAS = 2.76 TeVs -1 , 570 nbpp | < 1η| , 2.76 TeVpp FONLL(CTEQ6.6) FONLL(CTEQ6.6) bottom only FONLL(CTEQ6.6) charm only [GeV] T p4 6 8 10 12 14 FO NL L σ/ pp σ 1 2 [GeV] T p 4 6 8 10 12 14 c σ/ b σ 0 1 From FONLL Figure 5: Top panel: the pT dependence of the measured heavy-flavor muon cross-section in √ s = 2.76 TeV pp collisions. The data points are plotted at the average muon pT within a given pT interval. The vertical bars and bands on the data points indicate statistical and systematic uncertainties, respectively. The cross-section for heavy-flavor decays from FONLL calculations is also shown, along with the individual contributions from bottom and charm quarks. For the FONLL calculations, the vertical width of the band represents theoretical systematic uncertainties. Middle panel: the ratio of the measured and FONLL cross-sections integrated over each pT interval. Statistical and systematic uncertainties in the data are indicated by error bars and gray shaded boxes, respectively. The systematic uncertainty of the ratio from FONLL is indicated by the shaded band centered on unity. Bottom panel: the ratio of the bottom contribution to the charm contribution in the FONLL calculations. All results are averaged over |η | < 1. 18 is expected to be different, and the FONLL calculations show that the contribution of bottom and charm quarks changes with pT in the pp case, as shown in Figure 5. The parameter RAA decreases between peripheral 40–60% collisions, where it is about 0.65, to more central collisions, reaching a value of about 0.35 in the 0–10% centrality interval. Figure 8 shows a comparison of the RAA measurements in this paper with similar measurements for muons at forward rapidity (2.5< y <4) [20] and heavy-flavor electrons at mid-rapidity (|y | < 0.6) [47] from the ALICE Collaboration. In general, the results are consistent; however, the present measurements have considerably smaller uncertainties. Figure 9 compares the RAA measurement presented in this paper with the RAA of inclusive charged hadrons [42] at √sNN = 2.76 TeV and identified D0 mesons [80] from the CMS Collaboration at√sNN = 5.02 TeV. The RAA from D0 analyses is similar to that of inclusive hadrons for pT > 5 GeV [80], implying that the charm suppression is very similar to that for the light quarks and gluons. On the other hand, the heavy-flavor muon RAA, which includes contributions from bottom and charm, is observed to be larger than that of inclusive hadrons. This would imply a significantly smaller suppression for muons from the decays of b-hadrons. One caveat is that the D0 pT and the HF muon pT are related differently to the pT of the HF quark that produced them. However, this effect is mitigated by the relatively weak pT dependence of both the D0 and HF muon RAA over the 4–14 GeV pT range. [GeV] T p 4 6 8 10 12 14 ] - 1 G eV × [nb ηd Tpd µ H F N2 d e vt N1 〉 AA T〈 1 1 10 210 310 410 510 610 710 810 910 )5 10× 0 - 10 % ( )4 10×10 - 20 % ( )3 10×20 - 30 % ( )2 10×30 - 40 % ( )1 10×40 - 60 % ( pp ppscaled | < 1η| -1 , 570 nbpp -1Pb+Pb, 0.14 nb = 2.76 TeVNNsATLAS Figure 6: The pT dependence of the measured Pb+Pb heavy-flavor muon differential per-event yields for different centrality intervals scaled by the corresponding 〈TAA〉. Also shown is themeasured pp heavy-flavormuon differential cross-section. For clarity, the results for the different centralities are multiplied by scale factors that are indicated in the legend. The pp cross-section is re-plotted multiple times, as dashed lines, multiplied by these scale factors, for comparison with the results for the different Pb+Pb centralities. The error bars and shaded bands represent statistical and systematic uncertainties, respectively, and in many cases are too small to be seen. 19 [GeV] T p 4 6 8 10 12 14 AA R 0 0.5 1 -1Pb+Pb, 0.14 nb -1 , 570 nbpp | < 1η| ATLAS = 2.76 TeVNNs 0-10% 20-30% 40-60% [GeV] T p 4 6 8 10 12 14 AA R 0 0.5 1 -1Pb+Pb, 0.14 nb -1 , 570 nbpp | < 1η| ATLAS = 2.76 TeVNNs 10-20% 30-40% Figure 7: The measured Pb+Pb heavy-flavor muon RAA as a function of pT. For clarity, the centrality intervals are split between the two panels. The left panel shows results for the 0–10%, 20–30%, and 40–60% centrality intervals while the right panel shows results for the 10–20% and 30–40% intervals. The error bars represent statistical uncertainties. The boxes indicate theoretical uncertainties of 〈TAA〉. The shaded bands represent the experimental systematic uncertainties. [GeV] T p 4 6 8 10 12 14 AA R 0 0.2 0.4 0.6 0.8 1 0-10% [GeV] T p 4 6 8 10 12 14 AA R 0 0.2 0.4 0.6 0.8 1 20-30% [GeV] T p 4 6 8 10 12 14 AA R 0 0.2 0.4 0.6 0.8 1 10-20% [GeV] T p 4 6 8 10 12 14 AA R 0 0.2 0.4 0.6 0.8 1 30-40% 5 5.2 5.4 5.6 5.8 6 0 0.2 0.4 0.6 0.8 1 | < 1η| -1 , 570 nbpp -1Pb+Pb, 0.14 nb = 2.76 TeVNNs ATLAS [GeV] T p 4 6 8 10 12 14 AA R 0 0.2 0.4 0.6 0.8 1 40-60% |<1η : |±µ ATLAS HF |<0.6 y : |±e ALICE HF <4y : 2.5<±µ ALICE HF Figure 8: Comparison of the Pb+Pb heavy-flavor muon RAA measured in this analysis to similar measurements for muons at forward rapidity (2.5 < y < 4) and heavy-flavor electrons at mid-rapidity (|y | < 0.6) from the ALICE Collaboration. The error bars represent systematic and statistical uncertainties added in quadrature. The 〈TAA〉 errors are identical between the three measurements and are excluded from the comparison. 20 [GeV] T p 4 6 8 10 12 14 AA R 0 0.2 0.4 0.6 0.8 1 0-10% for 0-5%AAR ±h [GeV] T p 4 6 8 10 12 14 AA R 0 0.2 0.4 0.6 0.8 1 20-30% [GeV] T p 4 6 8 10 12 14 AA R 0 0.2 0.4 0.6 0.8 1 10-20% [GeV] T p 4 6 8 10 12 14 AA R 0 0.2 0.4 0.6 0.8 1 30-40% 5 5.2 5.4 5.6 5.8 6 0 0.2 0.4 0.6 0.8 1 | < 1η| -1 , 570 nbpp -1Pb+Pb, 0.14 nb = 2.76 TeVNNs ATLAS [GeV] T p 4 6 8 10 12 14 AA R 0 0.2 0.4 0.6 0.8 1 40-60% |<1η : |±µ ATLAS HF |<1y : |0 CMS D |<2η : |±h ATLAS Figure 9: Comparison of the Pb+Pb heavy-flavor muon RAA measured in this analysis to the RAA for inclusive charged hadrons from ATLAS and the RAA for identified D0 mesons from the CMS Collaboration. The error bars represent systematic and statistical uncertainties added in quadrature. The 〈TAA〉 errors are identical between the three measurements and are excluded from the comparison. The inclusive charged hadron RAA values shown in the top left panel are for the 0–5% centrality interval. 21 5.2 Heavy-flavor muon vn Figure 10 shows the v2 values measured using the EP method as a function of pT for the five centrality intervals in this analysis, including the statistical and total uncertainties. The evaluation of the total uncertainty includes the correlation between the statistical uncertainties and the systematic uncertainties that are proportional to vn, i.e. the relative uncertainties associated with the EP and pT resolutions. This correlation arises because as the measured vn is varied within its statistical uncertainty, the relative uncertainties that are proportional to vn also vary. The other (absolute) systematic uncertainties are added in quadrature to the correlated uncertainty to get the total uncertainty. Over the 10–40% centrality range, v2 is largest at the lowest measured pT of 4 GeV and decreases for higher pT. However, in the 0–10% and 40–60% centrality intervals, no clear pT dependence is visible. For all centralities, a significantly non-zero v2 is observed up to a pT of 12 GeV. Figure 10 also shows the vSP2 values, which are slightly higher than the EP values. The systematic uncertainties and a significant fraction of the statistical uncertainties are correlated between the EP and SP v2 values, and for clarity are not shown for the vSP2 . These measurements are consistent with previous v2 measurements of heavy-flavor muons [21] and heavy-flavor electrons [81] from the ALICE Collaboration, but have significantly smaller statistical and systematic uncertainties, and are performed over wider centrality and pT ranges. Figure 11 shows the v2 obtained from the EP method plotted as a function of centrality for different pT intervals. For pT in the range 4–8 GeV, the centrality dependences of the heavy-flavor muon v2 are qualitatively similar in shape, but considerably smaller in magnitude, to those for charged hadrons of similar pT [50, 52]. In this pT range, the v2 first increases from central to mid-central events, reaches a maximum between 20% and 40% centrality, and then decreases. Over the pT range of 8–12 GeV, some deviation from this trend is observed, with the v2 increasing monotonically from central to peripheral events. However, the associated statistical and systematic uncertainties are considerably larger. This monotonically increasing centrality dependence of the v2 at high pT is also seen in the inclusive charged hadron v2 [50, 52]. For the highest pT interval of 12 < pT < 14 GeV, the statistical and systematic errors are too large to identify a clear centrality dependence of v2. Figure 12 shows the pT dependence of v3. At a given pT and centrality, v3 is a factor of 2–3 smaller than the corresponding v2. As with v2, v3 also decreases with increasing pT over the 4–8 GeV pT range. At higher pT, the statistical uncertainties are too large to observe clear pT-dependent trends. The parameter v3 shows a much weaker variation with centrality: the v3 values at a given pT are consistent within uncertainties across the different centrality intervals. These features for the centrality and pT dependence are consistent with observations of the inclusive charged-hadron v3 [52]. Figure 13 shows the pT dependence of v4. The statistical uncertainties in v4 do not allow inference of any significant pT- or centrality-dependent trends. 22 [GeV] T p 4 6 8 10 12 14 2 v 0 0.05 0.1 Event plane Scalar product 0-10 % [GeV] T p 4 6 8 10 12 14 2 v 0 0.05 0.1 10-20 % [GeV] T p 4 6 8 10 12 14 2 v 0 0.05 0.1 30-40 % 5 5.2 5.4 5.6 5.8 6 0 0.05 0.1 | < 2η| -1Pb+Pb, 0.14 nb = 2.76 TeVNNs ATLAS [GeV] T p 4 6 8 10 12 14 2 v 0 0.05 0.1 20-30 % [GeV] T p 4 6 8 10 12 14 2 v 0 0.05 0.1 40-60 % Figure 10: The pT dependence of the Pb+Pb heavy-flavor muon v2. Results are shown for both the EP and SP methods. Each panel represents a different centrality interval. The error bars and shaded bands represent statistical and total uncertainties, respectively, and are shown only for the EP v2. The horizontal dashed lines indicate v2 = 0. 23 Centrality [%] 0 0.05 0.1 0102030405060 < 4.5 GeV T p4 < |<2η| = 2.76 TeVNNs -1Pb+Pb, 0.14 nb ATLAS Centrality [%] 0 0.05 0.1 0102030405060 < 5 GeV T p4.5 < 2v Ev en t Pl an e Centrality [%] 0 0.05 0.1 0102030405060 < 5.5 GeV T p5 < Centrality [%] 0 0.05 0.1 0102030405060 < 6 GeV T p5.5 < Centrality [%] 0 0.05 0.1 0102030405060 < 8 GeV T p6 < Centrality [%] 0 0.05 0.1 0102030405060 < 10 GeV T p8 < Centrality [%] 0 0.05 0.1 0102030405060 < 12 GeV T p10 < Centrality [%] 0 0.05 0.1 0102030405060 < 14 GeV T p12 < Figure 11: The centrality dependence of the Pb+Pb heavy-flavormuon v2 (the horizontal scale decreases in centrality). Each panel represents a different pT interval. The error bars and shaded bands represent statistical and total uncertainties, respectively. The dashed lines indicate v2 = 0. The results are for the EP method. 24 [GeV] T p 4 6 8 10 12 14 3 v 0 0.02 0.04 0-10 % [GeV] T p 4 6 8 10 12 14 3 v 0 0.02 0.04 10-20 % [GeV] T p 4 6 8 10 12 14 3 v 0.05− 0 0.05 30-40 % 5 5.2 5.4 5.6 5.8 6 0 0.02 0.04 | < 2η| -1Pb+Pb, 0.14 nb = 2.76 TeVNNs ATLAS Event plane Scalar product [GeV] T p 4 6 8 10 12 14 3 v 0 0.02 0.04 20-30 % [GeV] T p 4 6 8 10 12 14 3 v 0.05− 0 0.05 40-60 % Figure 12: The pT dependence of the Pb+Pb heavy-flavor muon v3. Results are shown for both the EP and SP methods. Each panel represents a different centrality interval. The error bars and shaded bands represent statistical and total uncertainties, respectively, and are shown only for the EP v3. The horizontal dashed lines indicate v3 = 0. 25 [GeV] T p 4 6 8 10 12 14 4 v 0.01− 0 0.01 0.02 0.03 0-10 % [GeV] T p 4 6 8 10 12 14 4 v 0.04− 0.02− 0 0.02 0.04 10-20 % [GeV] T p 4 6 8 10 12 14 4 v 0 0.05 30-40 % 5 5.2 5.4 5.6 5.8 6 0.01− 0 0.01 0.02 0.03 | < 2η| -1Pb+Pb, 0.14 nb = 2.76 TeVNNs ATLAS Event plane Scalar product [GeV] T p 4 6 8 10 12 14 4 v 0.04− 0.02− 0 0.02 0.04 20-30 % [GeV] T p 4 6 8 10 12 14 4 v 0 0.05 40-60 % Figure 13: The pT dependence of the Pb+Pb heavy-flavor muon v4. Results are shown for both the EP and SP methods. Each panel represents a different centrality interval. The error bars and shaded bands represent statistical and total uncertainties, respectively, and are shown only for the EP v4. The horizontal dashed lines indicate v4 = 0. 26 5.3 Comparison with theoretical models In this section, the measured RAA and v2 values are compared with calculations from the TAMU transport model [82] and the DABModmodel [83]. TAMU is a transport model for heavy flavor within the QGP and subsequent hadronic phase. The initial heavy-quark spectra used in the model are obtained from FONLL calculations, accounting for shadowing effects in Pb+Pb collisions. The space-time evolution of the bulk QGPmedium, in which the heavy quarks diffuse, is modeled using ideal relativistic hydrodynamics, tuned to reproduce the charged-hadron pT spectra and inclusive elliptic flow measured in Pb+Pb collisions at the LHC. The initial conditions for the hydrodynamic modeling are obtained from the Glauber model and do not include initial state fluctuations or initial flow. After this tuning, there are no free parameters in the model. The hadronization of heavy-flavor quarks is done partially via recombination of heavy quarks with light-flavor hadrons in the QGP and partially by fragmentation. Finally, the diffusion of heavy-flavor hadrons in the hadronic phase is continued until kinetic freeze-out. DABMod is an energy-loss model for heavy quarks traversing the QGP. The energy loss is a parameterized analytic function of the velocity of the heavy quark and the local temperature. The initial pT distribution of heavy quarks is obtained fromFONLL calculations. The underlyingQGP ismodeled using (2+1)-dimensional relativistic viscous hydrodynamics including event-by-event fluctuations in the initial conditions and subsequent hydrodynamic expansion. All the hydrodynamic parameters are tuned to describe the experimental flow data at low pT. The heavy quarks are evolved on top of the hydrodynamic underlying event until they reach a decoupling temperature below which they are hadronized via fragmentation. Any subsequent hadronic rescattering is neglected. The DABMod model calculations are available for RAA and v2–v4 for all the centrality intervals over which the measurements are performed in this paper. The TAMU calculations for RAA are available for the 0–10%, 20–40% and 40–60% centrality intervals, and for v2 for the 20–40% and 40–60% centrality intervals only. Figure 14 compares the measured heavy-flavor muon RAA values with theoretical calculations from the TAMU and DABMod models. Generally, the TAMU model describes many features of the data well, especially the weak pT dependence of RAA, while DABMod only reproduces the measured RAA for pT > 12 GeV. The failure of the DABMod model at low pT is understood to result from incomplete modeling of heavy-flavor suppression for pT . mb. The TAMUmodel predicts a larger suppression in the 40–60% centrality interval and a lower suppression in the 0–10% centrality interval than what is measured. Thus, the range of the suppression seen in the data is larger than in the TAMUmodel. As stated above, the TAMUmodel does not implement event-by-event fluctuations in the initial geometry, which are known to affect the dynamical evolution of bulk medium [63, 84]. This may be one of the possible reasons for the smaller dynamical range of RAA predicted by the model. Figure 15 compares the measured heavy-flavor v2 values with calculations from the TAMU and DABMod models. TheDABMod v2 values are systematically larger than theTAMUvalues and closer to themeasured v2. Unlike TAMU, the DABMod calculations include event-by-event fluctuations, which are known to increase vn [63, 84]. This could be a possible reason for the systematically larger v2 values obtained in the DABMod model. The DABMod calculations are consistent with the measured values for pT > 6 GeV for all centralities. However, for 4 < pT < 6 GeV and for the 10–40% centrality range, the calculated values are significantly smaller than the measured v2 values. The TAMU v2 values are significantly smaller than the measured v2 over the 4 < pT < 10 GeV pT range. Figure 16 compares the measured v3 values to calculations from the DABMod model. Features similar to the v2 comparison are observed; the model predictions are smaller than the measured v3 for 4 < pT < 6 GeV but become consistent with the data at higher pT. The DABMod calculations are also compared with the v4 measurements. However, the large 27 experimental uncertainties do not allow detailed comparisons with the model predictions. [GeV] T p 4 6 8 10 12 14 AA R 0 0.2 0.4 0.6 0.8 1 0-10% [GeV] T p 4 6 8 10 12 14 AA R 0 0.2 0.4 0.6 0.8 1 20-30% TAMU values for 20-40% [GeV] T p 4 6 8 10 12 14 AA R 0 0.2 0.4 0.6 0.8 1 10-20% [GeV] T p 4 6 8 10 12 14 AA R 0 0.2 0.4 0.6 0.8 1 30-40% TAMU values for 20-40% 5 5.2 5.4 5.6 5.8 6 0 0.2 0.4 0.6 0.8 1 | < 1η| -1 , 570 nbpp -1Pb+Pb, 0.14 nb = 2.76 TeVNNs ATLAS Data DABMod TAMU [GeV] T p 4 6 8 10 12 14 AA R 0 0.2 0.4 0.6 0.8 1 40-60% Figure 14: Comparison of the measured heavy-flavor muon RAA in Pb+Pb collisions with the values predicted from the TAMU transport model and the DABMod model. Each panel represents a different centrality interval. For the 20–30% and 30–40% centrality intervals, the plotted TAMU values correspond to the 20–40% centrality interval. For the data, the error bars represent statistical uncertainties, the shaded bands represent the experimental systematic uncertainties, and the boxes indicate theoretical uncertainties from 〈TAA〉. For the model calculations the bands indicate the theoretical systematic uncertainties. 28 [GeV] T p 4 6 8 10 12 14 2 v 0 0.05 0.1 0-10 % [GeV] T p 4 6 8 10 12 14 2 v 0 0.05 0.1 10-20 % [GeV] T p 4 6 8 10 12 14 2 v 0 0.05 0.1 30-40 % TAMU values for 20-40% [GeV]Tp 4 6 8 10 12 14 2 v 0 0.05 0.1 20-30 % TAMU values for 20-40% [GeV] T p 4 6 8 10 12 14 2 v 0 0.05 0.1 40-60 % 5 5.2 5.4 5.6 5.8 6 0 0.05 0.1 | < 2η| -1Pb+Pb, 0.14 nb = 2.76 TeVNNs ATLAS DATA DABMod TAMU Figure 15: Comparison of the Pb+Pb heavy-flavor muon v2 with calculations from the TAMU and DABModmodels. Each panel represents a different centrality interval. For the 20–30% and 30–40% centrality intervals, the plotted TAMU values correspond to the 20–40% centrality interval. For the data, the error bars and shaded bands represent statistical and total uncertainties, respectively. For the model calculations, the bands represent theoretical systematic uncertainties. 29 [GeV] T p 4 6 8 10 12 14 3 v 0 0.01 0.02 0.03 0.04 0-10 % [GeV] T p 4 6 8 10 12 14 3 v 0 0.01 0.02 0.03 0.04 10-20 % [GeV] T p 4 6 8 10 12 14 3 v 0.05− 0 0.05 30-40 % 5 5.2 5.4 5.6 5.8 6 0 0.01 0.02 0.03 0.04 | < 2η| -1Pb+Pb, 0.14 nb = 2.76 TeVNNs ATLAS DATA DABMod [GeV] T p 4 6 8 10 12 14 3 v 0 0.01 0.02 0.03 0.04 20-30 % [GeV] T p 4 6 8 10 12 14 3 v 0.05− 0 0.05 40-60 % Figure 16: Comparison of the Pb+Pb heavy-flavor muon v3 with calculations from the DABMod model. Each panel represents a different centrality interval. For the data, the error bars and shaded bands represent statistical and total uncertainties, respectively. For the model calculations, the bands represent theoretical systematic uncertainties. 30 6 Conclusion This paper presents ATLAS measurements of heavy-flavor muon production in 0.14 nb−1 of √sNN = 2.76 TeV Pb+Pb collisions and 570 nb−1 of √ s = 2.76 TeV pp collisions at the LHC. The measurements are performed over the transverse momentum range of 4 < pT < 14 GeV. Backgrounds arising from in-flight pion and kaon decays, hadronic showers, and mis-reconstructed muons are statistically removed using a template-fitting procedure based on the relative difference between the muon track momenta in the muon spectrometer and inner detector, corrected for energy loss in the calorimeter system. The heavy- flavor muon differential cross-sections and per-event yields are measured in pp and Pb+Pb collisions, respectively. The nuclear modification factor RAA calculated from these quantities shows a centrality- dependent suppression that does not depend on pT within uncertainties. In the 0–10% centrality interval, RAA ∼ 0.35. In Pb+Pb collisions, measurements of the heavy-flavor muon yields as a function of φ −Ψn, the azimuthal angle of the muons relative to the event-plane angles, show a clear sinusoidal modulation of the yield in all centrality intervals. The heavy-flavor muon vn, for n = 2–4, is measured in Pb+Pb collisions as a function of pT for five centrality intervals covering the 0–60% centrality range. Significant v2 values up to about 0.08 are observed at pT = 4 GeV. In the 10–20%, 20–30%, and 30–40% intervals, the v2 decreases with pT but is still significant at 10 GeV. At fixed pT, the v2 values show a systematic variation with centrality which is typical of elliptic-flow measurements. For most centrality intervals, v3 also decreases with increasing pT over the 4–8 GeV pT range. For pT > 8GeV, the statistical uncertainties in the measured v3 values are too large to discern any pT-dependent trends. At a given pT and centrality, the v3 values are smaller than the v2 values by a factor of 2–4. Further, v3 shows a much weaker centrality dependence than v2. Conclusions about any pT- or centrality-dependent trends in the v4 are limited by the statistical precision. The measured RAA and v2 are also compared with theoretical predictions from the TAMU and DABMod models. The RAA values from the TAMU model show a weak pT dependence over the 4–14 GeV pT range, qualitatively similar to the measured RAA. However, the predicted RAA values are smaller than the measured values in the 40–60% centrality interval, and larger than the measured values in the 0–10% centrality interval. On the other hand, the DABModmodel predicts a strong pT dependence for RAA, which is not observed in the data. The RAA value at pT = 4 GeV predicted by DABMod is significantly smaller than themeasured values but increases with increasing pT and becomes comparable to themeasured values at pT = 12 GeV. For v2, the TAMU and DABMod qualitatively reproduce the observed pT dependence but the DABMod calculations are more consistent with the measured values. Thus both models fail to simultaneously reproduce v2 and RAA over the measured pT range. The RAA values measured here for |η | < 1 and v2 values for |η | < 2, are compatible with, but are substantially more precise than, similar measurements of heavy-flavor muons at forward rapidity (2.5 < y < 4) and heavy-flavor electrons at mid-rapidity (|y | < 0.6) from the ALICE Collaboration. Thus, they should provide improved insight into the propagation of heavy quarks in the quark–gluon plasma created in Pb+Pb collisions. Acknowledgments We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. 31 We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, ERDF, FP7, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, Région Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC- IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [85]. References [1] H. van Hees and R. Rapp, Thermalization of heavy quarks in the quark-gluon plasma, Phys. Rev. C 71 (2005) 034907, arXiv: nucl-th/0412015. [2] H. van Hees, V. Greco, and R. Rapp, Heavy-quark probes of the quark-gluon plasma and interpretation of recent data taken at the BNL Relativistic Heavy Ion Collider, Phys. Rev. C 73 (2006) 034913, arXiv: nucl-th/0508055. [3] C. P. Herzog, A. Karch, P. Kovtun, C. Kozcaz, and L. G. Yaffe, Energy loss of a heavy quark moving through N = 4 supersymmetric Yang-Mills plasma, JHEP 07 (2006) 013, arXiv: hep-th/0605158. [4] H. van Hees, M. Mannarelli, V. Greco, and R. Rapp, Nonperturbative Heavy-Quark Diffusion in the Quark-Gluon Plasma, Phys. Rev. Lett. 100 (2008) 192301, arXiv: 0709.2884 [hep-ph]. [5] W. A. Horowitz and M. Gyulassy, Heavy quark jet tomography of Pb + Pb at LHC: AdS/CFT drag or pQCD energy loss? Phys. Lett. B 666 (2008) 320, arXiv: 0706.2336 [nucl-th]. [6] J. Uphoff, O. Fochler, Z. Xu, and C. Greiner, Elliptic flow and energy loss of heavy quarks in ultrarelativistic heavy ion collisions, Phys. Rev. C 84 (2011) 024908, arXiv: 1104.2295 [hep-ph]. 32 [7] M. He, R. J. Fries, and R. Rapp, Heavy-quark diffusion and hadronization in quark-gluon plasma, Phys. Rev. C 86 (2012) 014903, arXiv: 1106.6006 [nucl-th]. [8] S. Cao, G.-Y. Qin, and S. A. Bass, Heavy-quark dynamics and hadronization in ultrarelativistic heavy-ion collisions: Collisional versus radiative energy loss, Phys. Rev. C 88 (2013) 044907, arXiv: 1308.0617 [nucl-th]. [9] N. Armesto et al., Heavy Ion Collisions at the LHC - Last Call for Predictions, J. Phys. G 35 (2008) 054001, arXiv: 0711.0974 [hep-ph]. [10] Y. L. Dokshitzer and D. E. Kharzeev, Heavy quark colorimetry of QCD matter, Phys. Lett. B 519 (2001) 199, arXiv: hep-ph/0106202. [11] M. Djordjevic and M. Gyulassy, Heavy quark radiative energy loss in QCD matter, Nucl. Phys. A 733 (2004) 265, arXiv: nucl-th/0310076. [12] N. Armesto, C. A. Salgado, and U. A. Wiedemann, Medium induced gluon radiation off massive quarks fills the dead cone, Phys. Rev. D 69 (2004) 114003, arXiv: hep-ph/0312106. [13] M. Djordjevic, M. Gyulassy, R. Vogt, and S. Wicks, Influence of bottom quark jet quenching on single electron tomography of Au + Au, Phys. Lett. B 632 (2006) 81, arXiv: nucl-th/0507019. [14] P. B. Gossiaux, J. Aichelin, T. Gousset, and V. Guiho, Competition of Heavy Quark Radiative and Collisional Energy Loss in Deconfined Matter, J. Phys. G 37 (2010) 094019, arXiv: 1001.4166 [hep-ph]. [15] P. B. Gossiaux and J. Aichelin, Tomography of the Quark-Gluon Plasma by Heavy Quarks, J. Phys. G 36 (2009) 064028, arXiv: 0901.2462 [nucl-th]. [16] J. Casalderrey-Solana and D. Teaney, Heavy quark diffusion in strongly coupled N = 4 Yang-Mills, Phys. Rev. D 74 (2006) 085012, arXiv: hep-ph/0605199. [17] G. D. Moore and D. Teaney, How much do heavy quarks thermalize in a heavy ion collision? Phys. Rev. C 71 (2005) 064904, arXiv: hep-ph/0412346. [18] PHENIX Collaboration, A. Adare et al., Energy Loss and Flow of Heavy Quarks in Au+Au Collisions at √sNN = 200 GeV, Phys. Rev. Lett. 98 (2007) 172301, arXiv: nucl-ex/0611018. [19] PHENIX Collaboration, A. Adare et al., Heavy-quark production in p + p and energy loss and flow of heavy quarks in Au + Au collisions at √sNN = 200 GeV, Phys. Rev. C 84 (2011) 044905, arXiv: 1005.1627 [nucl-ex]. [20] ALICE Collaboration, Production of Muons from Heavy Flavor Decays at Forward Rapidity in pp and Pb-Pb Collisions at √sNN=2.76 TeV, Phys. Rev. Lett. 109 (2012) 112301, arXiv: 1205.6443 [hep-ex]. [21] ALICE Collaboration, Elliptic flow of muons from heavy-flavour hadron decays at forward rapidity in Pb-Pb collisions at √sNN = 2.76 TeV, Phys. Lett. B 753 (2016) 41, arXiv: 1507.03134 [nucl-ex]. [22] STAR Collaboration, L. Adamczyk et al, Observation of D0 Meson Nuclear Modifications in Au+Au Collisions at √sNN = 200 GeV, Phys. Rev. Lett. 113 (2014) 142301, arXiv: 1404.6185 [nucl-ex]. 33 [23] STAR Collaboration, L. Adamczyk et al., Measurement of D0 Azimuthal Anisotropy at Midrapidity in Au+Au Collisions at √sNN=200 GeV, Phys. Rev. Lett. 118 (2017) 212301, arXiv: 1701.06060 [nucl-ex]. [24] ALICE Collaboration, Suppression of high transverse momentum D mesons in central Pb-Pb collisions at √sNN = 2.76 TeV, JHEP 09 (2012) 112, arXiv: 1203.2160 [nucl-ex]. [25] ALICE Collaboration, D Meson Elliptic Flow in Noncentral Pb-Pb Collisions at √sNN = 2.76 TeV, Phys. Rev. Lett. 111 (2013) 102301, arXiv: 1305.2707 [nucl-ex]. [26] ALICE Collaboration, Azimuthal anisotropy of D-meson production in Pb-Pb collisions at √sNN = 2.76 TeV, Phys. Rev. C 90 (2014) 034904, arXiv: 1405.2001 [nucl-ex]. [27] S. Caron-Huot and G. D. Moore, Heavy quark diffusion in QCD and N = 4 SYM at next-to-leading order, JHEP 02 (2008) 081, arXiv: 0801.2173 [hep-ph]. [28] S. S. Gubser, S. S. Pufu, F. D. Rocha, and A. Yarom, “Energy loss in a strongly coupled thermal medium and the gauge-string duality,” Quark Gluon Plasma 4, ed. by R. Hwa and X.-N. Wang, World Scientific, Singapore, 2009, chap. 1, arXiv: 0902.4041 [hep-th]. [29] C. Hoyos, Drag and jet quenching of heavy quarks in a strongly coupled N = 2* plasma, JHEP 09 (2009) 068, arXiv: 0907.5036 [hep-th]. [30] J. Noronha, M. Gyulassy, and G. Torrieri, Conformal holography of bulk elliptic flow and heavy-quark quenching in relativistic heavy ion collisions, Phys. Rev. C 82 (2010) 054903, arXiv: 1009.2286 [nucl-th]. [31] M. Chernicoff, D. Fernandez, D. Mateos, and D. Trancanelli, Drag force in a strongly coupled anisotropic plasma, JHEP 08 (2012) 100, arXiv: 1202.3696 [hep-th]. [32] R. J. Glauber and G. Matthiae, High-energy scattering of protons by nuclei, Nucl. Phys. B 21 (1970) 135. [33] ATLAS Collaboration, Measurement of Z Boson Production in Pb+Pb Collisions at√ sNN = 2.76 TeV with the ATLAS Detector, Phys. Rev. Lett. 110 (2013) 022301, arXiv: 1210.6486 [hep-ex]. [34] CMS Collaboration, Study ofW boson production in PbPb and pp collisions at √sNN = 2.76 TeV, Phys. Lett. B 715 (2012) 66, arXiv: 1205.6334 [nucl-ex]. [35] CMS Collaboration, Measurement of isolated photon production in pp and PbPb collisions at √sNN = 2.76 TeV, Phys. Lett. B 710 (2012) 256, arXiv: 1201.3093 [nucl-ex]. [36] ATLAS Collaboration, Measurement of the production and lepton charge asymmetry ofW bosons in Pb+Pb collisions at √sNN = 2.76 TeV with the ATLAS detector, Eur. Phys. J. C 75 (2015) 23, arXiv: 1408.4674 [hep-ex]. [37] ATLAS Collaboration, Centrality, rapidity and transverse momentum dependence of isolated prompt photon production in lead–lead collisions at √sNN = 2.76 TeV measured with the ATLAS detector, Phys. Rev. C 93 (2016) 034914, arXiv: 1506.08552 [hep-ex]. 34 [38] ATLAS Collaboration, Measurements of the Nuclear Modification Factor for Jets in Pb+Pb Collisions at √sNN = 2.76 TeV with the ATLAS Detector, Phys. Rev. Lett. 114 (2015) 072302, arXiv: 1411.2357 [hep-ex]. [39] ALICE collaboration, Measurement of jet suppression in central Pb-Pb collisions at √sNN = 2.76 TeV, Phys. Lett. B 746 (2015) 1, arXiv: 1502.01689 [nucl-ex]. [40] CMS Collaboration, Study of high-pT charged particle suppression in PbPb compared to pp collisions at √sNN = 2.76 TeV, Eur. Phys. J. C 72 (2012) 1945, arXiv: 1202.2554 [nucl-ex]. [41] ALICE Collaboration, Centrality dependence of charged particle production at large transverse momentum in Pb–Pb collisions at √sNN = 2.76 TeV, Phys. Lett. B 720 (2013) 52, arXiv: 1208.2711 [hep-ex]. [42] ATLAS Collaboration, Measurement of charged-particle spectra in Pb+Pb collisions at√ sNN = 2.76 TeV with the ATLAS detector at the LHC, JHEP 09 (2015) 050, arXiv: 1504.04337 [hep-ex]. [43] M. Gyulassy, I. Vitev, X.-N. Wang, and B.-W. Zhang, “Jet quenching and radiative energy loss in dense nuclear matter,” Quark Gluon Plasma 3, ed. by R. Hwa and X.-N. Wang, World Scientific, Singapore, 2003, chap. 3, arXiv: nucl-th/0302077. [44] A. Majumder and M. Van Leeuwen, The theory and phenomenology of perturbative QCD based jet quenching, Prog. Part. Nucl. Phys. A 66 (2011) 41, arXiv: 1002.2206 [hep-ph]. [45] J. Casalderrey-Solana and C. A. Salgado, Introductory lectures on jet quenching in heavy ion collisions, Acta Phys. Polon. B 38 (2007) 3731, arXiv: 0712.3443 [hep-ph]. [46] CMS Collaboration, Suppression of non-prompt J/ψ, prompt J/ψ, and Υ(1S) in PbPb collisions at √sNN = 2.76 TeV, JHEP 05 (2012) 063, arXiv: 1201.5069 [hep-ex]. [47] ALICE Collaboration, Measurement of the production of high-pT electrons from heavy-flavour hadron decays in Pb-Pb collisions at √sNN = 2.76 TeV, Phys. Lett. B 771 (2017) 467, arXiv: 1609.07104 [nucl-ex]. [48] A. M. Poskanzer and S. A. Voloshin, Methods for analyzing anisotropic flow in relativistic nuclear collisions, Phys. Rev. C 58 (1998) 1671, arXiv: nucl-ex/9805001. [49] ALICE Collaboration, Elliptic Flow of Charged Particles in Pb-Pb Collisions at √sNN=2.76 TeV, Phys. Rev. Lett. 105 (2010) 252302, arXiv: 1011.3914 [nucl-ex]. [50] ATLAS Collaboration, Measurement of the pseudorapidity and transverse momentum dependence of the elliptic flow of charged particles in lead–lead collisions at √sNN = 2.76 TeV with the ATLAS detector, Phys. Lett. B 707 (2012) 330, arXiv: 1108.6018 [hep-ex]. [51] ALICE Collaboration, Harmonic decomposition of two particle angular correlations in Pb-Pb collisions at √sNN = 2.76 TeV, Phys. Lett. B 708 (2012) 249, arXiv: 1109.2501 [nucl-ex]. 35 [52] ATLAS Collaboration, Measurement of the azimuthal anisotropy for charged particle production in √sNN = 2.76 TeV lead–lead collisions with the ATLAS detector, Phys. Rev. C 86 (2012) 014907, arXiv: 1203.3087 [hep-ex]. [53] CMS Collaboration, Multiplicity and transverse momentum dependence of two- and four-particle correlations in pPb and PbPb collisions, Phys. Lett. B 724 (2013) 213, arXiv: 1305.0609 [nucl-ex]. [54] ALICE Collaboration, Elliptic flow of identified hadrons in Pb-Pb collisions at √sNN = 2.76 TeV, JHEP 06 (2015) 190, arXiv: 1405.4632 [nucl-ex]. [55] ALICE collaboration, Anisotropic flow of charged hadrons, pions and (anti-)protons measured at high transverse momentum in Pb-Pb collisions at √sNN=2.76 TeV, Phys. Lett. B 719 (2013) 18, arXiv: 1205.5761 [nucl-ex]. [56] V. Greco, C. M. Ko, and R. Rapp, Quark coalescence for charmed mesons in ultrarelativistic heavy ion collisions, Phys. Lett. B 595 (2004) 202, arXiv: nucl-th/0312100. [57] ATLAS Collaboration, Measurements of the electron and muon inclusive cross-sections in proton–proton collisions at √ s = 7 TeV with the ATLAS detector, Phys. Lett. B 707 (2012) 438, arXiv: 1109.0525 [hep-ex]. [58] ATLAS Collaboration, Measurement of the differential cross-sections of prompt and non-prompt production of J/ψ and ψ(2S) in pp collisions at √s = 7 and 8 TeV with the ATLAS detector, Eur. Phys. J. C 76 (2016) 283, arXiv: 1512.03657 [hep-ex]. [59] M. Luzum and J.-Y. Ollitrault, Eliminating experimental bias in anisotropic-flow measurements of high-energy nuclear collisions, Phys. Rev. C 87 (2013) 044907, arXiv: 1209.2323 [nucl-ex]. [60] ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider, JINST 3 (2008) S08003. [61] ATLAS Collaboration, Performance of the ATLAS Trigger System in 2010, Eur. Phys. J. C 72 (2012) 1849, arXiv: 1110.1530 [hep-ex]. [62] ATLAS Collaboration, Charged-particle multiplicities in pp interactions measured with the ATLAS detector at the LHC, New J. Phys. 13 (2011) 053033, arXiv: 1012.5104 [hep-ex]. [63] M. L. Miller, K. Reygers, S. J. Sanders, and P. Steinberg, Glauber modeling in high energy nuclear collisions, Ann. Rev. Nucl. Part. Sci. 57 (2007) 205, arXiv: nucl-ex/0701025. [64] S. Agostinelli et al., GEANT4 - a simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250. [65] ATLAS Collaboration, The ATLAS Simulation Infrastructure, Eur. Phys. J. C 70 (2010) 823, arXiv: 1005.4568 [physics.ins-det]. [66] T. Sjostrand, S. Mrenna, and P. Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026, arXiv: hep-ph/0603175. [67] ATLAS tunes of PYTHIA 6 and Pythia 8 for MC11, ATLAS Collaboration, ATL-PHYS-PUB-2011-009, url: http://cdsweb.cern.ch/record/1363300. [68] F. James and M. Roos, Minuit: A System for Function Minimization and Analysis of the Parameter Errors and Correlations, Comput. Phys. Commun. 10 (1975) 343. 36 [69] ATLAS Collaboration, Improved luminosity determination in pp collisions at √ s = 7 TeV using the ATLAS detector at the LHC, Eur. Phys. J. C 73 (2013) 2518, arXiv: 1302.4393 [hep-ex]. [70] PHENIX Collaboration, S. Afanasiev et al., Systematic studies of elliptic flow measurements in Au+Au collisions at √sNN = 200 GeV, Phys. Rev. C 80 (2009) 024909, arXiv: 0905.1070 [nucl-ex]. [71] ATLAS Collaboration, Measurement of event-plane correlations in √sNN = 2.76 TeV lead–lead collisions with the ATLAS detector, Phys. Rev. C 90 (2014) 024905, arXiv: 1403.0489 [hep-ex]. [72] ATLAS Collaboration, Measurement of the distributions of event-by-event flow harmonics in lead–lead collisions at √sNN = 2.76 TeV with the ATLAS detector at the LHC, JHEP 11 (2013) 183, arXiv: 1305.2942 [hep-ex]. [73] ATLAS Collaboration, Measurement of multi-particle azimuthal correlations in pp, p+Pb and low-multiplicity Pb+Pb collisions with the ATLAS detector, Eur. Phys. J. C 77 (2017) 428, arXiv: 1705.04176 [hep-ex]. [74] ALICE Collaboration, Measurement of pion, kaon and proton production in proton–proton collisions at √ s = 7 TeV, Eur. Phys. J. C 75 (2015) 226, arXiv: 1504.00024 [nucl-ex]. [75] M. Cacciari, M. Greco, and P. Nason, The pT spectrum in heavy-flavor hadroproduction, JHEP 05 (1998) 007, arXiv: hep-ph/9803400. [76] M. Cacciari, S. Frixione, and P. Nason, The pT spectrum in heavy-flavor photoproduction, JHEP 03 (2001) 006, arXiv: hep-ph/0102134. [77] M. Cacciari et al., Theoretical predictions for charm and bottom production at the LHC, JHEP 10 (2012) 137, arXiv: 1205.6344 [hep-ph]. [78] M. Cacciari, M. L. Mangano, and P. Nason, Gluon PDF constraints from the ratio of forward heavy-quark production at the LHC at √ S = 7 and 13 TeV, Eur. Phys. J. C 75 (2015) 610, arXiv: 1507.06197 [hep-ph]. [79] P. M. Nadolsky et al., Implications of CTEQ global analysis for collider observables, Phys. Rev. D 78 (2008) 013004, arXiv: 0802.0007 [hep-ph]. [80] CMS Collaboration, Nuclear modification factor of D0 mesons in PbPb collisions at √sNN = 5.02 TeV, (2017), arXiv: 1708.04962 [hep-ex]. [81] ALICE Collaboration, Elliptic flow of electrons from heavy-flavour hadron decays at mid-rapidity in Pb-Pb collisions at √sNN = 2.76 TeV, JHEP 09 (2016) 028, arXiv: 1606.00321 [nucl-ex]. [82] M. He, R. J. Fries, and R. Rapp, Heavy Flavor at the Large Hadron Collider in a Strong Coupling Approach, Phys. Lett. B 735 (2014) 445, Specific predictions for semi-leptonic decays to muons obtained by private communications, arXiv: 1401.3817 [nucl-th]. [83] C. A. G. Prado et al., Event-by-event correlations of soft hadrons and D0 mesons in 5.02 TeV PbPb collisions at the CERN Large Hadron Collider, Phys. Rev. C 96 (2017) 064903, Specific predictions for semi-leptonic decays to muons obtained by private communications, arXiv: 1611.02965 [nucl-th]. 37 [84] PHOBOS collaboration, B. Alver et al., System Size, Energy, Pseudorapidity, and Centrality Dependence of Elliptic Flow, Phys. Rev. Lett. 98 (2007) 242302, arXiv: nucl-ex/0610037. [85] ATLAS Collaboration, ATLAS Computing Acknowledgements, ATL-GEN-PUB-2016-002, url: https://cds.cern.ch/record/2202407. 38 The ATLAS Collaboration M. Aaboud34d, G. Aad99, B. Abbott124, O. Abdinov13,*, B. Abeloos128, D.K. Abhayasinghe91, S.H. Abidi165, O.S. AbouZeid143, N.L. Abraham153, H. Abramowicz159, H. Abreu158, Y. Abulaiti6, B.S. Acharya64a,64b,p, S. Adachi161, L. Adamczyk81a, J. Adelman119, M. Adersberger112, A. Adiguzel12c,aj, T. Adye141, A.A. Affolder143, Y. Afik158, C. Agheorghiesei27c, J.A. Aguilar-Saavedra136f,136a, F. Ahmadov77,ah, G. Aielli71a,71b, S. Akatsuka83, T.P.A. Åkesson94, E. Akilli52, A.V. Akimov108, G.L. Alberghi23b,23a, J. Albert174, P. Albicocco49, M.J. Alconada Verzini86, S. Alderweireldt117, M. Aleksa35, I.N. Aleksandrov77, C. Alexa27b, G. Alexander159, T. Alexopoulos10, M. Alhroob124, B. Ali138, G. Alimonti66a, J. Alison36, S.P. Alkire145, C. Allaire128, B.M.M. Allbrooke153, B.W. Allen127, P.P. Allport21, A. Aloisio67a,67b, A. Alonso39, F. Alonso86, C. Alpigiani145, A.A. Alshehri55, M.I. Alstaty99, B. Alvarez Gonzalez35, D. Álvarez Piqueras172, M.G. Alviggi67a,67b, B.T. Amadio18, Y. Amaral Coutinho78b, L. Ambroz131, C. Amelung26, D. Amidei103, S.P. Amor Dos Santos136a,136c, S. Amoroso35, C.S. Amrouche52, C. Anastopoulos146, L.S. Ancu52, N. Andari21, T. Andeen11, C.F. Anders59b, J.K. Anders20, K.J. Anderson36, A. Andreazza66a,66b, V. Andrei59a, C.R. Anelli174, S. Angelidakis37, I. Angelozzi118, A. Angerami38, A.V. Anisenkov120b,120a, A. Annovi69a, C. Antel59a, M.T. Anthony146, M. Antonelli49, D.J.A. Antrim169, F. Anulli70a, M. Aoki79, L. Aperio Bella35, G. Arabidze104, Y. Arai79, J.P. Araque136a, V. Araujo Ferraz78b, R. Araujo Pereira78b, A.T.H. Arce47, R.E. Ardell91, F.A. Arduh86, J-F. Arguin107, S. Argyropoulos75, A.J. Armbruster35, L.J. Armitage90, A Armstrong169, O. Arnaez165, H. Arnold118, M. Arratia31, O. Arslan24, A. Artamonov109,*, G. Artoni131, S. Artz97, S. Asai161, N. Asbah44, A. Ashkenazi159, E.M. Asimakopoulou170, L. Asquith153, K. Assamagan29, R. Astalos28a, R.J. Atkin32a, M. Atkinson171, N.B. Atlay148, K. Augsten138, G. Avolio35, R. Avramidou58a, B. Axen18, M.K. Ayoub15a, G. Azuelos107,aw, A.E. Baas59a, M.J. Baca21, H. Bachacou142, K. Bachas65a,65b, M. Backes131, P. Bagnaia70a,70b, M. Bahmani82, H. Bahrasemani149, A.J. Bailey172, J.T. Baines141, M. Bajic39, C. Bakalis10, O.K. Baker181, P.J. Bakker118, D. Bakshi Gupta93, E.M. Baldin120b,120a, P. Balek178, F. Balli142, W.K. Balunas133, E. Banas82, A. Bandyopadhyay24, S. Banerjee179,l, A.A.E. Bannoura180, L. Barak159, W.M. Barbe37, E.L. Barberio102, D. Barberis53b,53a, M. Barbero99, T. Barillari113, M-S. Barisits35, J. Barkeloo127, T. Barklow150, N. Barlow31, R. Barnea158, S.L. Barnes58c, B.M. Barnett141, R.M. Barnett18, Z. Barnovska-Blenessy58a, A. Baroncelli72a, G. Barone26, A.J. Barr131, L. Barranco Navarro172, F. Barreiro96, J. Barreiro Guimarães da Costa15a, R. Bartoldus150, A.E. Barton87, P. Bartos28a, A. Basalaev134, A. Bassalat128, R.L. Bates55, S.J. Batista165, S. Batlamous34e, J.R. Batley31, M. Battaglia143, M. Bauce70a,70b, F. Bauer142, K.T. Bauer169, H.S. Bawa150,n, J.B. Beacham122, M.D. Beattie87, T. Beau132, P.H. Beauchemin168, P. Bechtle24, H.C. Beck51, H.P. Beck20,t, K. Becker50, M. Becker97, C. Becot44, A. Beddall12d, A.J. Beddall12a, V.A. Bednyakov77, M. Bedognetti118, C.P. Bee152, T.A. Beermann35, M. Begalli78b, M. Begel29, A. Behera152, J.K. Behr44, A.S. Bell92, G. Bella159, L. Bellagamba23b, A. Bellerive33, M. Bellomo158, K. Belotskiy110, N.L. Belyaev110, O. Benary159,*, D. Benchekroun34a, M. Bender112, N. Benekos10, Y. Benhammou159, E. Benhar Noccioli181, J. Benitez75, D.P. Benjamin47, M. Benoit52, J.R. Bensinger26, S. Bentvelsen118, L. Beresford131, M. Beretta49, D. Berge44, E. Bergeaas Kuutmann170, N. Berger5, L.J. Bergsten26, J. Beringer18, S. Berlendis7, N.R. Bernard100, G. Bernardi132, C. Bernius150, F.U. Bernlochner24, T. Berry91, P. Berta97, C. Bertella15a, G. Bertoli43a,43b, I.A. Bertram87, G.J. Besjes39, O. Bessidskaia Bylund43a,43b, M. Bessner44, N. Besson142, A. Bethani98, S. Bethke113, A. Betti24, A.J. Bevan90, J. Beyer113, R.M. Bianchi135, O. Biebel112, D. Biedermann19, R. Bielski98, K. Bierwagen97, N.V. Biesuz69a,69b, M. Biglietti72a, T.R.V. Billoud107, M. Bindi51, A. Bingul12d, C. Bini70a,70b, S. Biondi23b,23a, T. Bisanz51, J.P. Biswal159, C. Bittrich46, D.M. Bjergaard47, J.E. Black150, 39 K.M. Black25, R.E. Blair6, T. Blazek28a, I. Bloch44, C. Blocker26, A. Blue55, U. Blumenschein90, Dr. Blunier144a, G.J. Bobbink118, V.S. Bobrovnikov120b,120a, S.S. Bocchetta94, A. Bocci47, D. Boerner180, D. Bogavac112, A.G. Bogdanchikov120b,120a, C. Bohm43a, V. Boisvert91, P. Bokan170, T. Bold81a, A.S. Boldyrev111, A.E. Bolz59b, M. Bomben132, M. Bona90, J.S. Bonilla127, M. Boonekamp142, A. Borisov140, G. Borissov87, J. Bortfeldt35, D. Bortoletto131, V. Bortolotto71a,61b,61c,71b, D. Boscherini23b, M. Bosman14, J.D. Bossio Sola30, K. Bouaouda34a, J. Boudreau135, E.V. Bouhova-Thacker87, D. Boumediene37, C. Bourdarios128, S.K. Boutle55, A. Boveia122, J. Boyd35, I.R. Boyko77, A.J. Bozson91, J. Bracinik21, N. Brahimi99, A. Brandt8, G. Brandt180, O. Brandt59a, F. Braren44, U. Bratzler162, B. Brau100, J.E. Brau127, W.D. Breaden Madden55, K. Brendlinger44, A.J. Brennan102, L. Brenner44, R. Brenner170, S. Bressler178, B. Brickwedde97, D.L. Briglin21, D. Britton55, D. Britzger59b, I. Brock24, R. Brock104, G. Brooijmans38, T. Brooks91, W.K. Brooks144b, E. Brost119, J.H Broughton21, P.A. Bruckman de Renstrom82, D. Bruncko28b, A. Bruni23b, G. Bruni23b, L.S. Bruni118, S. Bruno71a,71b, B.H. Brunt31, M. Bruschi23b, N. Bruscino135, P. Bryant36, L. Bryngemark44, T. Buanes17, Q. Buat35, P. Buchholz148, A.G. Buckley55, I.A. Budagov77, F. Buehrer50, M.K. Bugge130, O. Bulekov110, D. Bullock8, T.J. Burch119, S. Burdin88, C.D. Burgard118, A.M. Burger5, B. Burghgrave119, K. Burka82, S. Burke141, I. Burmeister45, J.T.P. Burr131, D. Büscher50, V. Büscher97, E. Buschmann51, P. Bussey55, J.M. Butler25, C.M. Buttar55, J.M. Butterworth92, P. Butti35, W. Buttinger35, A. Buzatu155, A.R. Buzykaev120b,120a, G. Cabras23b,23a, S. Cabrera Urbán172, D. Caforio138, H. Cai171, V.M.M. Cairo2, O. Cakir4a, N. Calace52, P. Calafiura18, A. Calandri99, G. Calderini132, P. Calfayan63, G. Callea40b,40a, L.P. Caloba78b, S. Calvente Lopez96, D. Calvet37, S. Calvet37, T.P. Calvet152, M. Calvetti69a,69b, R. Camacho Toro132, S. Camarda35, P. Camarri71a,71b, D. Cameron130, R. Caminal Armadans100, C. Camincher35, S. Campana35, M. Campanelli92, A. Camplani39, A. Campoverde148, V. Canale67a,67b, M. Cano Bret58c, J. Cantero125, T. Cao159, Y. Cao171, M.D.M. Capeans Garrido35, I. Caprini27b, M. Caprini27b, M. Capua40b,40a, R.M. Carbone38, R. Cardarelli71a, F.C. Cardillo50, I. Carli139, T. Carli35, G. Carlino67a, B.T. Carlson135, L. Carminati66a,66b, R.M.D. Carney43a,43b, S. Caron117, E. Carquin144b, S. Carrá66a,66b, G.D. Carrillo-Montoya35, D. Casadei32b, M.P. Casado14,h, A.F. Casha165, M. Casolino14, D.W. Casper169, R. Castelijn118, F.L. Castillo172, V. Castillo Gimenez172, N.F. Castro136a,136e, A. Catinaccio35, J.R. Catmore130, A. Cattai35, J. Caudron24, V. Cavaliere29, E. Cavallaro14, D. Cavalli66a, M. Cavalli-Sforza14, V. Cavasinni69a,69b, E. Celebi12b, F. Ceradini72a,72b, L. Cerda Alberich172, A.S. Cerqueira78a, A. Cerri153, L. Cerrito71a,71b, F. Cerutti18, A. Cervelli23b,23a, S.A. Cetin12b, A. Chafaq34a, D Chakraborty119, S.K. Chan57, W.S. Chan118, Y.L. Chan61a, P. Chang171, J.D. Chapman31, D.G. Charlton21, C.C. Chau33, C.A. Chavez Barajas153, S. Che122, A. Chegwidden104, S. Chekanov6, S.V. Chekulaev166a, G.A. Chelkov77,av, M.A. Chelstowska35, C. Chen58a, C.H. Chen76, H. Chen29, J. Chen58a, J. Chen38, S. Chen133, S.J. Chen15c, X. Chen15b,au, Y. Chen80, Y-H. Chen44, H.C. Cheng103, H.J. Cheng15d, A. Cheplakov77, E. Cheremushkina140, R. Cherkaoui El Moursli34e, E. Cheu7, K. Cheung62, L. Chevalier142, V. Chiarella49, G. Chiarelli69a, G. Chiodini65a, A.S. Chisholm35, A. Chitan27b, I. Chiu161, Y.H. Chiu174, M.V. Chizhov77, K. Choi63, A.R. Chomont128, S. Chouridou160, Y.S. Chow118, V. Christodoulou92, M.C. Chu61a, J. Chudoba137, A.J. Chuinard101, J.J. Chwastowski82, L. Chytka126, D. Cinca45, V. Cindro89, I.A. Cioară24, A. Ciocio18, F. Cirotto67a,67b, Z.H. Citron178, M. Citterio66a, A. Clark52, M.R. Clark38, P.J. Clark48, C. Clement43a,43b, Y. Coadou99, M. Cobal64a,64c, A. Coccaro53b,53a, J. Cochran76, A.E.C. Coimbra178, L. Colasurdo117, B. Cole38, A.P. Colijn118, J. Collot56, P. Conde Muiño136a,136b, E. Coniavitis50, S.H. Connell32b, I.A. Connelly98, S. Constantinescu27b, F. Conventi67a,ax, A.M. Cooper-Sarkar131, F. Cormier173, K.J.R. Cormier165, M. Corradi70a,70b, E.E. Corrigan94, F. Corriveau101,af, A. Cortes-Gonzalez35, M.J. Costa172, D. Costanzo146, G. Cottin31, G. Cowan91, B.E. Cox98, J. Crane98, K. Cranmer121, S.J. Crawley55, R.A. Creager133, G. Cree33, S. Crépé-Renaudin56, F. Crescioli132, M. Cristinziani24, V. Croft121, 40 G. Crosetti40b,40a, A. Cueto96, T. Cuhadar Donszelmann146, A.R. Cukierman150, M. Curatolo49, J. Cúth97, S. Czekierda82, P. Czodrowski35, M.J. Da Cunha Sargedas De Sousa58b,136b, C. Da Via98, W. Dabrowski81a, T. Dado28a,aa, S. Dahbi34e, T. Dai103, F. Dallaire107, C. Dallapiccola100, M. Dam39, G. D’amen23b,23a, J.R. Dandoy133, M.F. Daneri30, N.P. Dang179,l, N.D Dann98, M. Danninger173, V. Dao35, G. Darbo53b, S. Darmora8, O. Dartsi5, A. Dattagupta127, T. Daubney44, S. D’Auria55, W. Davey24, C. David44, T. Davidek139, D.R. Davis47, E. Dawe102, I. Dawson146, K. De8, R. De Asmundis67a, A. De Benedetti124, S. De Castro23b,23a, S. De Cecco70a,70b, N. De Groot117, P. de Jong118, H. De la Torre104, F. De Lorenzi76, A. De Maria51,v, D. De Pedis70a, A. De Salvo70a, U. De Sanctis71a,71b, A. De Santo153, K. De Vasconcelos Corga99, J.B. De Vivie De Regie128, C. Debenedetti143, D.V. Dedovich77, N. Dehghanian3, M. Del Gaudio40b,40a, J. Del Peso96, D. Delgove128, F. Deliot142, C.M. Delitzsch7, M. Della Pietra67a,67b, D. Della Volpe52, A. Dell’Acqua35, L. Dell’Asta25, M. Delmastro5, C. Delporte128, P.A. Delsart56, D.A. DeMarco165, S. Demers181, M. Demichev77, S.P. Denisov140, D. Denysiuk118, L. D’Eramo132, D. Derendarz82, J.E. Derkaoui34d, F. Derue132, P. Dervan88, K. Desch24, C. Deterre44, K. Dette165, M.R. Devesa30, P.O. Deviveiros35, A. Dewhurst141, S. Dhaliwal26, F.A. Di Bello52, A. Di Ciaccio71a,71b, L. Di Ciaccio5, W.K. Di Clemente133, C. Di Donato67a,67b, A. Di Girolamo35, B. Di Micco72a,72b, R. Di Nardo35, K.F. Di Petrillo57, A. Di Simone50, R. Di Sipio165, D. Di Valentino33, C. Diaconu99, M. Diamond165, F.A. Dias39, T. Dias Do Vale136a, M.A. Diaz144a, J. Dickinson18, E.B. Diehl103, J. Dietrich19, S. Díez Cornell44, A. Dimitrievska18, J. Dingfelder24, F. Dittus35, F. Djama99, T. Djobava157b, J.I. Djuvsland59a, M.A.B. Do Vale78c, M. Dobre27b, D. Dodsworth26, C. Doglioni94, J. Dolejsi139, Z. Dolezal139, M. Donadelli78d, J. Donini37, A. D’onofrio90, M. D’Onofrio88, J. Dopke141, A. Doria67a, M.T. Dova86, A.T. Doyle55, E. Drechsler51, E. Dreyer149, T. Dreyer51, M. Dris10, Y. Du58b, J. Duarte-Campderros159, F. Dubinin108, A. Dubreuil52, E. Duchovni178, G. Duckeck112, A. Ducourthial132, O.A. Ducu107,z, D. Duda113, A. Dudarev35, A.C. Dudder97, E.M. Duffield18, L. Duflot128, M. Dührssen35, C. Dülsen180, M. Dumancic178, A.E. Dumitriu27b,f, A.K. Duncan55, M. Dunford59a, A. Duperrin99, H. Duran Yildiz4a, M. Düren54, A. Durglishvili157b, D. Duschinger46, B. Dutta44, D. Duvnjak1, M. Dyndal44, S. Dysch98, B.S. Dziedzic82, C. Eckardt44, K.M. Ecker113, R.C. Edgar103, T. Eifert35, G. Eigen17, K. Einsweiler18, T. Ekelof170, M. El Kacimi34c, R. El Kosseifi99, V. Ellajosyula99, M. Ellert170, F. Ellinghaus180, A.A. Elliot90, N. Ellis35, J. Elmsheuser29, M. Elsing35, D. Emeliyanov141, Y. Enari161, J.S. Ennis176, M.B. Epland47, J. Erdmann45, A. Ereditato20, S. Errede171, M. Escalier128, C. Escobar172, B. Esposito49, O. Estrada Pastor172, A.I. Etienvre142, E. Etzion159, H. Evans63, A. Ezhilov134, M. Ezzi34e, F. Fabbri55, L. Fabbri23b,23a, V. Fabiani117, G. Facini92, R.M. Faisca Rodrigues Pereira136a, R.M. Fakhrutdinov140, S. Falciano70a, P.J. Falke5, S. Falke5, J. Faltova139, Y. Fang15a, M. Fanti66a,66b, A. Farbin8, A. Farilla72a, E.M. Farina68a,68b, T. Farooque104, S. Farrell18, S.M. Farrington176, P. Farthouat35, F. Fassi34e, P. Fassnacht35, D. Fassouliotis9, M. Faucci Giannelli48, A. Favareto53b,53a, W.J. Fawcett52, L. Fayard128, O.L. Fedin134,r, W. Fedorko173, M. Feickert41, S. Feigl130, L. Feligioni99, C. Feng58b, E.J. Feng35, M. Feng47, M.J. Fenton55, A.B. Fenyuk140, L. Feremenga8, J. Ferrando44, A. Ferrari170, P. Ferrari118, R. Ferrari68a, D.E. Ferreira de Lima59b, A. Ferrer172, D. Ferrere52, C. Ferretti103, F. Fiedler97, A. Filipčič89, F. Filthaut117, K.D. Finelli25, M.C.N. Fiolhais136a,136c,b, L. Fiorini172, C. Fischer14, W.C. Fisher104, N. Flaschel44, I. Fleck148, P. Fleischmann103, R.R.M. Fletcher133, T. Flick180, B.M. Flierl112, L.M. Flores133, L.R. Flores Castillo61a, N. Fomin17, G.T. Forcolin98, A. Formica142, F.A. Förster14, A.C. Forti98, A.G. Foster21, D. Fournier128, H. Fox87, S. Fracchia146, P. Francavilla69a,69b, M. Franchini23b,23a, S. Franchino59a, D. Francis35, L. Franconi130, M. Franklin57, M. Frate169, M. Fraternali68a,68b, D. Freeborn92, S.M. Fressard-Batraneanu35, B. Freund107, W.S. Freund78b, D. Froidevaux35, J.A. Frost131, C. Fukunaga162, T. Fusayasu114, J. Fuster172, O. Gabizon158, A. Gabrielli23b,23a, A. Gabrielli18, G.P. Gach81a, S. Gadatsch52, P. Gadow113, G. Gagliardi53b,53a, 41 L.G. Gagnon107, C. Galea27b, B. Galhardo136a,136c, E.J. Gallas131, B.J. Gallop141, P. Gallus138, G. Galster39, R. Gamboa Goni90, K.K. Gan122, S. Ganguly178, Y. Gao88, Y.S. Gao150,n, C. García172, J.E. García Navarro172, J.A. García Pascual15a, M. Garcia-Sciveres18, R.W. Gardner36, N. Garelli150, V. Garonne130, K. Gasnikova44, A. Gaudiello53b,53a, G. Gaudio68a, I.L. Gavrilenko108, A. Gavrilyuk109, C. Gay173, G. Gaycken24, E.N. Gazis10, C.N.P. Gee141, J. Geisen51, M. Geisen97, M.P. Geisler59a, K. Gellerstedt43a,43b, C. Gemme53b, M.H. Genest56, C. Geng103, S. Gentile70a,70b, C. Gentsos160, S. George91, D. Gerbaudo14, G. Gessner45, S. Ghasemi148, M. Ghasemi Bostanabad174, M. Ghneimat24, B. Giacobbe23b, S. Giagu70a,70b, N. Giangiacomi23b,23a, P. Giannetti69a, S.M. Gibson91, M. Gignac143, D. Gillberg33, G. Gilles180, D.M. Gingrich3,aw, M.P. Giordani64a,64c, F.M. Giorgi23b, P.F. Giraud142, P. Giromini57, G. Giugliarelli64a,64c, D. Giugni66a, F. Giuli131, M. Giulini59b, S. Gkaitatzis160, I. Gkialas9,k, E.L. Gkougkousis14, P. Gkountoumis10, L.K. Gladilin111, C. Glasman96, J. Glatzer14, P.C.F. Glaysher44, A. Glazov44, M. Goblirsch-Kolb26, J. Godlewski82, S. Goldfarb102, T. Golling52, D. Golubkov140, A. Gomes136a,136b,136d, R. Goncalves Gama78a, R. Gonçalo136a, G. Gonella50, L. Gonella21, A. Gongadze77, F. Gonnella21, J.L. Gonski57, S. González de la Hoz172, S. Gonzalez-Sevilla52, L. Goossens35, P.A. Gorbounov109, H.A. Gordon29, B. Gorini35, E. Gorini65a,65b, A. Gorišek89, A.T. Goshaw47, C. Gössling45, M.I. Gostkin77, C.A. Gottardo24, C.R. Goudet128, D. Goujdami34c, A.G. Goussiou145, N. Govender32b,d, C. Goy5, E. Gozani158, I. Grabowska-Bold81a, P.O.J. Gradin170, E.C. Graham88, J. Gramling169, E. Gramstad130, S. Grancagnolo19, V. Gratchev134, P.M. Gravila27f, C. Gray55, H.M. Gray18, Z.D. Greenwood93,al, C. Grefe24, K. Gregersen92, I.M. Gregor44, P. Grenier150, K. Grevtsov44, J. Griffiths8, A.A. Grillo143, K. Grimm150,c, S. Grinstein14,ab, Ph. Gris37, J.-F. Grivaz128, S. Groh97, E. Gross178, J. Grosse-Knetter51, G.C. Grossi93, Z.J. Grout92, C. Grud103, A. Grummer116, L. Guan103, W. Guan179, J. Guenther35, A. Guerguichon128, F. Guescini166a, D. Guest169, R. Gugel50, B. Gui122, T. Guillemin5, S. Guindon35, U. Gul55, C. Gumpert35, J. Guo58c, W. Guo103, Y. Guo58a,u, Z. Guo99, R. Gupta41, S. Gurbuz12c, G. Gustavino124, B.J. Gutelman158, P. Gutierrez124, C. Gutschow92, C. Guyot142, M.P. Guzik81a, C. Gwenlan131, C.B. Gwilliam88, A. Haas121, C. Haber18, H.K. Hadavand8, N. Haddad34e, A. Hadef58a, S. Hageböck24, M. Hagihara167, H. Hakobyan182,*, M. Haleem175, J. Haley125, G. Halladjian104, G.D. Hallewell99, K. Hamacher180, P. Hamal126, K. Hamano174, A. Hamilton32a, G.N. Hamity146, K. Han58a,ak, L. Han58a, S. Han15d, K. Hanagaki79,x, M. Hance143, D.M. Handl112, B. Haney133, R. Hankache132, P. Hanke59a, E. Hansen94, J.B. Hansen39, J.D. Hansen39, M.C. Hansen24, P.H. Hansen39, K. Hara167, A.S. Hard179, T. Harenberg180, S. Harkusha105, P.F. Harrison176, N.M. Hartmann112, Y. Hasegawa147, A. Hasib48, S. Hassani142, S. Haug20, R. Hauser104, L. Hauswald46, L.B. Havener38, M. Havranek138, C.M. Hawkes21, R.J. Hawkings35, D. Hayden104, C. Hayes152, C.P. Hays131, J.M. Hays90, H.S. Hayward88, S.J. Haywood141, M.P. Heath48, V. Hedberg94, L. Heelan8, S. Heer24, K.K. Heidegger50, J. Heilman33, S. Heim44, T. Heim18, B. Heinemann44,ar, J.J. Heinrich112, L. Heinrich121, C. Heinz54, J. Hejbal137, L. Helary35, A. Held173, S. Hellesund130, S. Hellman43a,43b, C. Helsens35, R.C.W. Henderson87, Y. Heng179, S. Henkelmann173, A.M. Henriques Correia35, G.H. Herbert19, H. Herde26, V. Herget175, Y. Hernández Jiménez32c, H. Herr97, G. Herten50, R. Hertenberger112, L. Hervas35, T.C. Herwig133, G.G. Hesketh92, N.P. Hessey166a, J.W. Hetherly41, S. Higashino79, E. Higón-Rodriguez172, K. Hildebrand36, E. Hill174, J.C. Hill31, K.K. Hill29, K.H. Hiller44, S.J. Hillier21, M. Hils46, I. Hinchliffe18, M. Hirose129, D. Hirschbuehl180, B. Hiti89, O. Hladik137, D.R. Hlaluku32c, X. Hoad48, J. Hobbs152, N. Hod166a, M.C. Hodgkinson146, A. Hoecker35, M.R. Hoeferkamp116, F. Hoenig112, D. Hohn24, D. Hohov128, T.R. Holmes36, M. Holzbock112, M. Homann45, S. Honda167, T. Honda79, T.M. Hong135, A. Hönle113, B.H. Hooberman171, W.H. Hopkins127, Y. Horii115, P. Horn46, A.J. Horton149, L.A. Horyn36, J-Y. Hostachy56, A. Hostiuc145, S. Hou155, A. Hoummada34a, J. Howarth98, J. Hoya86, M. Hrabovsky126, J. Hrdinka35, I. Hristova19, J. Hrivnac128, A. Hrynevich106, T. Hryn’ova5, P.J. Hsu62, S.-C. Hsu145, Q. Hu29, S. Hu58c, Y. Huang15a, 42 Z. Hubacek138, F. Hubaut99, M. Huebner24, F. Huegging24, T.B. Huffman131, E.W. Hughes38, M. Huhtinen35, R.F.H. Hunter33, P. Huo152, A.M. Hupe33, N. Huseynov77,ah, J. Huston104, J. Huth57, R. Hyneman103, G. Iacobucci52, G. Iakovidis29, I. Ibragimov148, L. Iconomidou-Fayard128, Z. Idrissi34e, P. Iengo35, R. Ignazzi39, O. Igonkina118,ad, R. Iguchi161, T. Iizawa52, Y. Ikegami79, M. Ikeno79, D. Iliadis160, N. Ilic150, F. Iltzsche46, G. Introzzi68a,68b, M. Iodice72a, K. Iordanidou38, V. Ippolito70a,70b, M.F. Isacson170, N. Ishijima129, M. Ishino161, M. Ishitsuka163, C. Issever131, S. Istin12c,aq, F. Ito167, J.M. Iturbe Ponce61a, R. Iuppa73a,73b, A. Ivina178, H. Iwasaki79, J.M. Izen42, V. Izzo67a, S. Jabbar3, P. Jacka137, P. Jackson1, R.M. Jacobs24, V. Jain2, G. Jäkel180, K.B. Jakobi97, K. Jakobs50, S. Jakobsen74, T. Jakoubek137, D.O. Jamin125, D.K. Jana93, R. Jansky52, J. Janssen24, M. Janus51, P.A. Janus81a, G. Jarlskog94, N. Javadov77,ah, T. Javůrek50, M. Javurkova50, F. Jeanneau142, L. Jeanty18, J. Jejelava157a,ai, A. Jelinskas176, P. Jenni50,e, J. Jeong44, C. Jeske176, S. Jézéquel5, H. Ji179, J. Jia152, H. Jiang76, Y. Jiang58a, Z. Jiang150,s, S. Jiggins50, F.A. Jimenez Morales37, J. Jimenez Pena172, S. Jin15c, A. Jinaru27b, O. Jinnouchi163, H. Jivan32c, P. Johansson146, K.A. Johns7, C.A. Johnson63, W.J. Johnson145, K. Jon-And43a,43b, R.W.L. Jones87, S.D. Jones153, S. Jones7, T.J. Jones88, J. Jongmanns59a, P.M. Jorge136a,136b, J. Jovicevic166a, X. Ju179, J.J. Junggeburth113, A. Juste Rozas14,ab, A. Kaczmarska82, M. Kado128, H. Kagan122, M. Kagan150, T. Kaji177, E. Kajomovitz158, C.W. Kalderon94, A. Kaluza97, S. Kama41, A. Kamenshchikov140, L. Kanjir89, Y. Kano161, V.A. Kantserov110, J. Kanzaki79, B. Kaplan121, L.S. Kaplan179, D. Kar32c, M.J. Kareem166b, E. Karentzos10, S.N. Karpov77, Z.M. Karpova77, V. Kartvelishvili87, A.N. Karyukhin140, K. Kasahara167, L. Kashif179, R.D. Kass122, A. Kastanas151, Y. Kataoka161, C. Kato161, J. Katzy44, K. Kawade80, K. Kawagoe85, T. Kawamoto161, G. Kawamura51, E.F. Kay88, V.F. Kazanin120b,120a, R. Keeler174, R. Kehoe41, J.S. Keller33, E. Kellermann94, J.J. Kempster21, J. Kendrick21, O. Kepka137, S. Kersten180, B.P. Kerševan89, R.A. Keyes101, M. Khader171, F. Khalil-Zada13, A. Khanov125, A.G. Kharlamov120b,120a, T. Kharlamova120b,120a, A. Khodinov164, T.J. Khoo52, E. Khramov77, J. Khubua157b, S. Kido80, M. Kiehn52, C.R. Kilby91, S.H. Kim167, Y.K. Kim36, N. Kimura64a,64c, O.M. Kind19, B.T. King88, D. Kirchmeier46, J. Kirk141, A.E. Kiryunin113, T. Kishimoto161, D. Kisielewska81a, V. Kitali44, O. Kivernyk5, E. Kladiva28b,*, T. Klapdor-Kleingrothaus50, M.H. Klein103, M. Klein88, U. Klein88, K. Kleinknecht97, P. Klimek119, A. Klimentov29, R. Klingenberg45,*, T. Klingl24, T. Klioutchnikova35, F.F. Klitzner112, P. Kluit118, S. Kluth113, E. Kneringer74, E.B.F.G. Knoops99, A. Knue50, A. Kobayashi161, D. Kobayashi85, T. Kobayashi161, M. Kobel46, M. Kocian150, P. Kodys139, T. Koffas33, E. Koffeman118, N.M. Köhler113, T. Koi150, M. Kolb59b, I. Koletsou5, T. Kondo79, N. Kondrashova58c, K. Köneke50, A.C. König117, T. Kono79, R. Konoplich121,an, V. Konstantinides92, N. Konstantinidis92, B. Konya94, R. Kopeliansky63, S. Koperny81a, K. Korcyl82, K. Kordas160, A. Korn92, I. Korolkov14, E.V. Korolkova146, O. Kortner113, S. Kortner113, T. Kosek139, V.V. Kostyukhin24, A. Kotwal47, A. Koulouris10, A. Kourkoumeli-Charalampidi68a,68b, C. Kourkoumelis9, E. Kourlitis146, V. Kouskoura29, A.B. Kowalewska82, R. Kowalewski174, T.Z. Kowalski81a, C. Kozakai161, W. Kozanecki142, A.S. Kozhin140, V.A. Kramarenko111, G. Kramberger89, D. Krasnopevtsev110, M.W. Krasny132, A. Krasznahorkay35, D. Krauss113, J.A. Kremer81a, J. Kretzschmar88, P. Krieger165, K. Krizka18, K. Kroeninger45, H. Kroha113, J. Kroll137, J. Kroll133, J. Krstic16, U. Kruchonak77, H. Krüger24, N. Krumnack76, M.C. Kruse47, T. Kubota102, S. Kuday4b, J.T. Kuechler180, S. Kuehn35, A. Kugel59a, F. Kuger175, T. Kuhl44, V. Kukhtin77, R. Kukla99, Y. Kulchitsky105, S. Kuleshov144b, Y.P. Kulinich171, M. Kuna56, T. Kunigo83, A. Kupco137, T. Kupfer45, O. Kuprash159, H. Kurashige80, L.L. Kurchaninov166a, Y.A. Kurochkin105, M.G. Kurth15d, E.S. Kuwertz174, M. Kuze163, J. Kvita126, T. Kwan174, A. La Rosa113, J.L. La Rosa Navarro78d, L. La Rotonda40b,40a, F. La Ruffa40b,40a, C. Lacasta172, F. Lacava70a,70b, J. Lacey44, D.P.J. Lack98, H. Lacker19, D. Lacour132, E. Ladygin77, R. Lafaye5, B. Laforge132, T. Lagouri32c, S. Lai51, S. Lammers63, W. Lampl7, E. Lançon29, U. Landgraf50, M.P.J. Landon90, M.C. Lanfermann52, V.S. Lang44, J.C. Lange14, R.J. Langenberg35, 43 A.J. Lankford169, F. Lanni29, K. Lantzsch24, A. Lanza68a, A. Lapertosa53b,53a, S. Laplace132, J.F. Laporte142, T. Lari66a, F. Lasagni Manghi23b,23a, M. Lassnig35, T.S. Lau61a, A. Laudrain128, A.T. Law143, P. Laycock88, M. Lazzaroni66a,66b, B. Le102, O. Le Dortz132, E. Le Guirriec99, E.P. Le Quilleuc142, M. LeBlanc7, T. LeCompte6, F. Ledroit-Guillon56, C.A. Lee29, G.R. Lee144a, L. Lee57, S.C. Lee155, B. Lefebvre101, M. Lefebvre174, F. Legger112, C. Leggett18, G. Lehmann Miotto35, W.A. Leight44, A. Leisos160,y, M.A.L. Leite78d, R. Leitner139, D. Lellouch178, B. Lemmer51, K.J.C. Leney92, T. Lenz24, B. Lenzi35, R. Leone7, S. Leone69a, C. Leonidopoulos48, G. Lerner153, C. Leroy107, R. Les165, A.A.J. Lesage142, C.G. Lester31, M. Levchenko134, J. Levêque5, D. Levin103, L.J. Levinson178, D. Lewis90, B. Li103, C-Q. Li58a,am, H. Li58b, L. Li58c, Q. Li15d, Q.Y. Li58a, S. Li58d,58c, X. Li58c, Y. Li148, Z. Liang15a, B. Liberti71a, A. Liblong165, K. Lie61c, S. Liem118, A. Limosani154, C.Y. Lin31, K. Lin104, S.C. Lin156, T.H. Lin97, R.A. Linck63, B.E. Lindquist152, A.L. Lionti52, E. Lipeles133, A. Lipniacka17, M. Lisovyi59b, T.M. Liss171,at, A. Lister173, A.M. Litke143, J.D. Little8, B. Liu76, B.L Liu6, H.B. Liu29, H. Liu103, J.B. Liu58a, J.K.K. Liu131, K. Liu132, M. Liu58a, P. Liu18, Y.L. Liu58a, Y.W. Liu58a, M. Livan68a,68b, A. Lleres56, J. Llorente Merino15a, S.L. Lloyd90, C.Y. Lo61b, F. Lo Sterzo41, E.M. Lobodzinska44, P. Loch7, F.K. Loebinger98, K.M. Loew26, T. Lohse19, K. Lohwasser146, M. Lokajicek137, B.A. Long25, J.D. Long171, R.E. Long87, L. Longo65a,65b, K.A. Looper122, J.A. Lopez144b, I. Lopez Paz14, A. Lopez Solis132, J. Lorenz112, N. Lorenzo Martinez5, M. Losada22, P.J. Lösel112, A. Lösle50, X. Lou44, X. Lou15a, A. Lounis128, J. Love6, P.A. Love87, J.J. Lozano Bahilo172, H. Lu61a, N. Lu103, Y.J. Lu62, H.J. Lubatti145, C. Luci70a,70b, A. Lucotte56, C. Luedtke50, F. Luehring63, I. Luise132, W. Lukas74, L. Luminari70a, B. Lund-Jensen151, M.S. Lutz100, P.M. Luzi132, D. Lynn29, R. Lysak137, E. Lytken94, F. Lyu15a, V. Lyubushkin77, H. Ma29, L.L. Ma58b, Y. Ma58b, G. Maccarrone49, A. Macchiolo113, C.M. Macdonald146, J. Machado Miguens133,136b, D. Madaffari172, R. Madar37, W.F. Mader46, A. Madsen44, N. Madysa46, J. Maeda80, S. Maeland17, T. Maeno29, A.S. Maevskiy111, V. Magerl50, C. Maidantchik78b, T. Maier112, A. Maio136a,136b,136d, O. Majersky28a, S. Majewski127, Y. Makida79, N. Makovec128, B. Malaescu132, Pa. Malecki82, V.P. Maleev134, F. Malek56, U. Mallik75, D. Malon6, C. Malone31, S. Maltezos10, S. Malyukov35, J. Mamuzic172, G. Mancini49, I. Mandić89, J. Maneira136a, L. Manhaes de Andrade Filho78a, J. Manjarres Ramos46, K.H. Mankinen94, A. Mann112, A. Manousos74, B. Mansoulie142, J.D. Mansour15a, M. Mantoani51, S. Manzoni66a,66b, G. Marceca30, L. March52, L. Marchese131, G. Marchiori132, M. Marcisovsky137, C.A. Marin Tobon35, M. Marjanovic37, D.E. Marley103, F. Marroquim78b, Z. Marshall18, M.U.F Martensson170, S. Marti-Garcia172, C.B. Martin122, T.A. Martin176, V.J. Martin48, B. Martin dit Latour17, M. Martinez14,ab, V.I. Martinez Outschoorn100, S. Martin-Haugh141, V.S. Martoiu27b, A.C. Martyniuk92, A. Marzin35, L. Masetti97, T. Mashimo161, R. Mashinistov108, J. Masik98, A.L. Maslennikov120b,120a, L.H. Mason102, L. Massa71a,71b, P. Mastrandrea5, A. Mastroberardino40b,40a, T. Masubuchi161, P. Mättig180, J. Maurer27b, B. Maček89, S.J. Maxfield88, D.A. Maximov120b,120a, R. Mazini155, I. Maznas160, S.M. Mazza143, N.C. Mc Fadden116, G. Mc Goldrick165, S.P. Mc Kee103, A. McCarn103, T.G. McCarthy113, L.I. McClymont92, E.F. McDonald102, J.A. Mcfayden35, G. Mchedlidze51, M.A. McKay41, K.D. McLean174, S.J. McMahon141, P.C. McNamara102, C.J. McNicol176, R.A. McPherson174,af, J.E. Mdhluli32c, Z.A. Meadows100, S. Meehan145, T.M. Megy50, S. Mehlhase112, A. Mehta88, T. Meideck56, B. Meirose42, D. Melini172,i, B.R. Mellado Garcia32c, J.D. Mellenthin51, M. Melo28a, F. Meloni20, A. Melzer24, S.B. Menary98, L. Meng88, X.T. Meng103, A. Mengarelli23b,23a, S. Menke113, E. Meoni40b,40a, S. Mergelmeyer19, C. Merlassino20, P. Mermod52, L. Merola67a,67b, C. Meroni66a, F.S. Merritt36, A. Messina70a,70b, J. Metcalfe6, A.S. Mete169, C. Meyer133, J. Meyer158, J-P. Meyer142, H. Meyer Zu Theenhausen59a, F. Miano153, R.P. Middleton141, L. Mijović48, G. Mikenberg178, M. Mikestikova137, M. Mikuž89, M. Milesi102, A. Milic165, D.A. Millar90, D.W. Miller36, A. Milov178, D.A. Milstead43a,43b, A.A. Minaenko140, I.A. Minashvili157b, A.I. Mincer121, B. Mindur81a, 44 M. Mineev77, Y. Minegishi161, Y. Ming179, L.M. Mir14, A. Mirto65a,65b, K.P. Mistry133, T. Mitani177, J. Mitrevski112, V.A. Mitsou172, A. Miucci20, P.S. Miyagawa146, A. Mizukami79, J.U. Mjörnmark94, T. Mkrtchyan182, M. Mlynarikova139, T. Moa43a,43b, K. Mochizuki107, P. Mogg50, S. Mohapatra38, S. Molander43a,43b, R. Moles-Valls24, M.C. Mondragon104, K. Mönig44, J. Monk39, E. Monnier99, A. Montalbano149, J. Montejo Berlingen35, F. Monticelli86, S. Monzani66a, R.W. Moore3, N. Morange128, D. Moreno22, M. Moreno Llácer35, P. Morettini53b, M. Morgenstern118, S. Morgenstern35, D. Mori149, T. Mori161, M. Morii57, M. Morinaga177, V. Morisbak130, A.K. Morley35, G. Mornacchi35, A.P. Morris92, J.D. Morris90, L. Morvaj152, P. Moschovakos10, M. Mosidze157b, H.J. Moss146, J. Moss150,o, K. Motohashi163, R. Mount150, E. Mountricha35, E.J.W. Moyse100, S. Muanza99, F. Mueller113, J. Mueller135, R.S.P. Mueller112, D. Muenstermann87, P. Mullen55, G.A. Mullier20, F.J. Munoz Sanchez98, P. Murin28b, W.J. Murray176,141, A. Murrone66a,66b, M. Muškinja89, C. Mwewa32a, A.G. Myagkov140,ao, J. Myers127, M. Myska138, B.P. Nachman18, O. Nackenhorst45, K. Nagai131, K. Nagano79, Y. Nagasaka60, K. Nagata167, M. Nagel50, E. Nagy99, A.M. Nairz35, Y. Nakahama115, K. Nakamura79, T. Nakamura161, I. Nakano123, H. Nanjo129, F. Napolitano59a, R.F. Naranjo Garcia44, R. Narayan11, D.I. Narrias Villar59a, I. Naryshkin134, T. Naumann44, G. Navarro22, R. Nayyar7, H.A. Neal103,*, P.Y. Nechaeva108, T.J. Neep142, A. Negri68a,68b, M. Negrini23b, S. Nektarijevic117, C. Nellist51, M.E. Nelson131, S. Nemecek137, P. Nemethy121, M. Nessi35,g, M.S. Neubauer171, M. Neumann180, P.R. Newman21, T.Y. Ng61c, Y.S. Ng19, H.D.N. Nguyen99, T. Nguyen Manh107, E. Nibigira37, R.B. Nickerson131, R. Nicolaidou142, J. Nielsen143, N. Nikiforou11, V. Nikolaenko140,ao, I. Nikolic-Audit132, K. Nikolopoulos21, P. Nilsson29, Y. Ninomiya79, A. Nisati70a, N. Nishu58c, R. Nisius113, I. Nitsche45, T. Nitta177, T. Nobe161, Y. Noguchi83, M. Nomachi129, I. Nomidis132, M.A. Nomura29, T. Nooney90, M. Nordberg35, N. Norjoharuddeen131, T. Novak89, O. Novgorodova46, R. Novotny138, M. Nozaki79, L. Nozka126, K. Ntekas169, E. Nurse92, F. Nuti102, F.G. Oakham33,aw, H. Oberlack113, T. Obermann24, J. Ocariz132, A. Ochi80, I. Ochoa38, J.P. Ochoa-Ricoux144a, K. O’Connor26, S. Oda85, S. Odaka79, A. Oh98, S.H. Oh47, C.C. Ohm151, H. Oide53b,53a, H. Okawa167, Y. Okazaki83, Y. Okumura161, T. Okuyama79, A. Olariu27b, L.F. Oleiro Seabra136a, S.A. Olivares Pino144a, D. Oliveira Damazio29, J.L. Oliver1, M.J.R. Olsson36, A. Olszewski82, J. Olszowska82, D.C. O’Neil149, A. Onofre136a,136e, K. Onogi115, P.U.E. Onyisi11, H. Oppen130, M.J. Oreglia36, Y. Oren159, D. Orestano72a,72b, E.C. Orgill98, N. Orlando61b, A.A. O’Rourke44, R.S. Orr165, B. Osculati53b,53a,*, V. O’Shea55, R. Ospanov58a, G. Otero y Garzon30, H. Otono85, M. Ouchrif34d, F. Ould-Saada130, A. Ouraou142, Q. Ouyang15a, M. Owen55, R.E. Owen21, V.E. Ozcan12c, N. Ozturk8, J. Pacalt126, H.A. Pacey31, K. Pachal149, A. Pacheco Pages14, L. Pacheco Rodriguez142, C. Padilla Aranda14, S. Pagan Griso18, M. Paganini181, G. Palacino63, S. Palazzo40b,40a, S. Palestini35, M. Palka81b, D. Pallin37, I. Panagoulias10, C.E. Pandini35, J.G. Panduro Vazquez91, P. Pani35, G. Panizzo64a,64c, L. Paolozzi52, T.D. Papadopoulou10, K. Papageorgiou9,k, A. Paramonov6, D. Paredes Hernandez61b, B. Parida58c, A.J. Parker87, K.A. Parker44, M.A. Parker31, F. Parodi53b,53a, J.A. Parsons38, U. Parzefall50, V.R. Pascuzzi165, J.M.P. Pasner143, E. Pasqualucci70a, S. Passaggio53b, F. Pastore91, P. Pasuwan43a,43b, S. Pataraia97, J.R. Pater98, A. Pathak179,l, T. Pauly35, B. Pearson113, M. Pedersen130, L. Pedraza Diaz117, S. Pedraza Lopez172, R. Pedro136a,136b, S.V. Peleganchuk120b,120a, O. Penc137, C. Peng15d, H. Peng58a, B.S. Peralva78a, M.M. Perego142, A.P. Pereira Peixoto136a, D.V. Perepelitsa29, F. Peri19, L. Perini66a,66b, H. Pernegger35, S. Perrella67a,67b, V.D. Peshekhonov77,*, K. Peters44, R.F.Y. Peters98, B.A. Petersen35, T.C. Petersen39, E. Petit56, A. Petridis1, C. Petridou160, P. Petroff128, E. Petrolo70a, M. Petrov131, F. Petrucci72a,72b, M. Pettee181, N.E. Pettersson100, A. Peyaud142, R. Pezoa144b, T. Pham102, F.H. Phillips104, P.W. Phillips141, G. Piacquadio152, E. Pianori18, A. Picazio100, M.A. Pickering131, R. Piegaia30, J.E. Pilcher36, A.D. Pilkington98, M. Pinamonti71a,71b, J.L. Pinfold3, M. Pitt178, M-A. Pleier29, V. Pleskot139, E. Plotnikova77, D. Pluth76, P. Podberezko120b,120a, R. Poettgen94, R. Poggi52, L. Poggioli128, I. Pogrebnyak104, D. Pohl24, I. Pokharel51, G. Polesello68a, 45 A. Poley44, A. Policicchio40b,40a, R. Polifka35, A. Polini23b, C.S. Pollard44, V. Polychronakos29, D. Ponomarenko110, L. Pontecorvo70a, G.A. Popeneciu27d, D.M. Portillo Quintero132, S. Pospisil138, K. Potamianos44, I.N. Potrap77, C.J. Potter31, H. Potti11, T. Poulsen94, J. Poveda35, T.D. Powell146, M.E. Pozo Astigarraga35, P. Pralavorio99, S. Prell76, D. Price98, M. Primavera65a, S. Prince101, N. Proklova110, K. Prokofiev61c, F. Prokoshin144b, S. Protopopescu29, J. Proudfoot6, M. Przybycien81a, A. Puri171, P. Puzo128, J. Qian103, Y. Qin98, A. Quadt51, M. Queitsch-Maitland44, A. Qureshi1, P. Rados102, F. Ragusa66a,66b, G. Rahal95, J.A. Raine98, S. Rajagopalan29, A. Ramirez Morales90, T. Rashid128, S. Raspopov5, M.G. Ratti66a,66b, D.M. Rauch44, F. Rauscher112, S. Rave97, B. Ravina146, I. Ravinovich178, J.H. Rawling98, M. Raymond35, A.L. Read130, N.P. Readioff56, M. Reale65a,65b, D.M. Rebuzzi68a,68b, A. Redelbach175, G. Redlinger29, R. Reece143, R.G. Reed32c, K. Reeves42, L. Rehnisch19, J. Reichert133, A. Reiss97, C. Rembser35, H. Ren15d, M. Rescigno70a, S. Resconi66a, E.D. Resseguie133, S. Rettie173, E. Reynolds21, O.L. Rezanova120b,120a, P. Reznicek139, R. Richter113, S. Richter92, E. Richter-Was81b, O. Ricken24, M. Ridel132, P. Rieck113, C.J. Riegel180, O. Rifki44, M. Rijssenbeek152, A. Rimoldi68a,68b, M. Rimoldi20, L. Rinaldi23b, G. Ripellino151, B. Ristić87, E. Ritsch35, I. Riu14, J.C. Rivera Vergara144a, F. Rizatdinova125, E. Rizvi90, C. Rizzi14, R.T. Roberts98, S.H. Robertson101,af, A. Robichaud-Veronneau101, D. Robinson31, J.E.M. Robinson44, A. Robson55, E. Rocco97, C. Roda69a,69b, Y. Rodina99, S. Rodriguez Bosca172, A. Rodriguez Perez14, D. Rodriguez Rodriguez172, A.M. Rodríguez Vera166b, S. Roe35, C.S. Rogan57, O. Røhne130, R. Röhrig113, C.P.A. Roland63, J. Roloff57, A. Romaniouk110, M. Romano23b,23a, N. Rompotis88, M. Ronzani121, L. Roos132, S. Rosati70a, K. Rosbach50, P. Rose143, N-A. Rosien51, E. Rossi67a,67b, L.P. Rossi53b, L. Rossini66a,66b, J.H.N. Rosten31, R. Rosten14, M. Rotaru27b, J. Rothberg145, D. Rousseau128, D. Roy32c, A. Rozanov99, Y. Rozen158, X. Ruan32c, F. Rubbo150, F. Rühr50, A. Ruiz-Martinez33, Z. Rurikova50, N.A. Rusakovich77, H.L. Russell101, J.P. Rutherfoord7, N. Ruthmann35, E.M. Rüttinger44,m, Y.F. Ryabov134, M. Rybar171, G. Rybkin128, S. Ryu6, A. Ryzhov140, G.F. Rzehorz51, P. Sabatini51, G. Sabato118, S. Sacerdoti128, H.F-W. Sadrozinski143, R. Sadykov77, F. Safai Tehrani70a, P. Saha119, M. Sahinsoy59a, A. Sahu180, M. Saimpert44, M. Saito161, T. Saito161, H. Sakamoto161, A. Sakharov121,an, D. Salamani52, G. Salamanna72a,72b, J.E. Salazar Loyola144b, D. Salek118, P.H. Sales De Bruin170, D. Salihagic113, A. Salnikov150, J. Salt172, D. Salvatore40b,40a, F. Salvatore153, A. Salvucci61a,61b,61c, A. Salzburger35, D. Sammel50, D. Sampsonidis160, D. Sampsonidou160, J. Sánchez172, A. Sanchez Pineda64a,64c, H. Sandaker130, C.O. Sander44, M. Sandhoff180, C. Sandoval22, D.P.C. Sankey141, M. Sannino53b,53a, Y. Sano115, A. Sansoni49, C. Santoni37, H. Santos136a, I. Santoyo Castillo153, A. Sapronov77, J.G. Saraiva136a,136d, O. Sasaki79, K. Sato167, E. Sauvan5, P. Savard165,aw, N. Savic113, R. Sawada161, C. Sawyer141, L. Sawyer93,al, C. Sbarra23b, A. Sbrizzi23b,23a, T. Scanlon92, J. Schaarschmidt145, P. Schacht113, B.M. Schachtner112, D. Schaefer36, L. Schaefer133, J. Schaeffer97, S. Schaepe35, U. Schäfer97, A.C. Schaffer128, D. Schaile112, R.D. Schamberger152, N. Scharmberg98, V.A. Schegelsky134, D. Scheirich139, F. Schenck19, M. Schernau169, C. Schiavi53b,53a, S. Schier143, L.K. Schildgen24, Z.M. Schillaci26, E.J. Schioppa35, M. Schioppa40b,40a, K.E. Schleicher50, S. Schlenker35, K.R. Schmidt-Sommerfeld113, K. Schmieden35, C. Schmitt97, S. Schmitt44, S. Schmitz97, U. Schnoor50, L. Schoeffel142, A. Schoening59b, E. Schopf24, M. Schott97, J.F.P. Schouwenberg117, J. Schovancova35, S. Schramm52, A. Schulte97, H-C. Schultz-Coulon59a, M. Schumacher50, B.A. Schumm143, Ph. Schune142, A. Schwartzman150, T.A. Schwarz103, H. Schweiger98, Ph. Schwemling142, R. Schwienhorst104, A. Sciandra24, G. Sciolla26, M. Scornajenghi40b,40a, F. Scuri69a, F. Scutti102, L.M. Scyboz113, J. Searcy103, C.D. Sebastiani70a,70b, P. Seema24, S.C. Seidel116, A. Seiden143, T. Seiss36, J.M. Seixas78b, G. Sekhniaidze67a, K. Sekhon103, S.J. Sekula41, N. Semprini-Cesari23b,23a, S. Sen47, S. Senkin37, C. Serfon130, L. Serin128, L. Serkin64a,64b, M. Sessa72a,72b, H. Severini124, F. Sforza168, A. Sfyrla52, E. Shabalina51, J.D. Shahinian143, N.W. Shaikh43a,43b, L.Y. Shan15a, R. Shang171, J.T. Shank25, M. Shapiro18, A.S. Sharma1, A. Sharma131, 46 P.B. Shatalov109, K. Shaw153, S.M. Shaw98, A. Shcherbakova134, Y. Shen124, N. Sherafati33, A.D. Sherman25, P. Sherwood92, L. Shi155,as, S. Shimizu80, C.O. Shimmin181, M. Shimojima114, I.P.J. Shipsey131, S. Shirabe85, M. Shiyakova77, J. Shlomi178, A. Shmeleva108, D. Shoaleh Saadi107, M.J. Shochet36, S. Shojaii102, D.R. Shope124, S. Shrestha122, E. Shulga110, P. Sicho137, A.M. Sickles171, P.E. Sidebo151, E. Sideras Haddad32c, O. Sidiropoulou175, A. Sidoti23b,23a, F. Siegert46, Dj. Sijacki16, J. Silva136a, M. Silva Jr.179, S.B. Silverstein43a, L. Simic77, S. Simion128, E. Simioni97, M. Simon97, P. Sinervo165, N.B. Sinev127, M. Sioli23b,23a, G. Siragusa175, I. Siral103, S.Yu. Sivoklokov111, J. Sjölin43a,43b, M.B. Skinner87, P. Skubic124, M. Slater21, T. Slavicek138, M. Slawinska82, K. Sliwa168, R. Slovak139, V. Smakhtin178, B.H. Smart5, J. Smiesko28a, N. Smirnov110, S.Yu. Smirnov110, Y. Smirnov110, L.N. Smirnova111, O. Smirnova94, J.W. Smith51, M.N.K. Smith38, R.W. Smith38, M. Smizanska87, K. Smolek138, A.A. Snesarev108, I.M. Snyder127, S. Snyder29, R. Sobie174,af, A.M. Soffa169, A. Soffer159, A. Søgaard48, D.A. Soh155, G. Sokhrannyi89, C.A. Solans Sanchez35, M. Solar138, E.Yu. Soldatov110, U. Soldevila172, A.A. Solodkov140, A. Soloshenko77, O.V. Solovyanov140, V. Solovyev134, P. Sommer146, H. Son168, W. Song141, A. Sopczak138, F. Sopkova28b, D. Sosa59b, C.L. Sotiropoulou69a,69b, S. Sottocornola68a,68b, R. Soualah64a,64c,j, A.M. Soukharev120b,120a, D. South44, B.C. Sowden91, S. Spagnolo65a,65b, M. Spalla113, M. Spangenberg176, F. Spanò91, D. Sperlich19, F. Spettel113, T.M. Spieker59a, R. Spighi23b, G. Spigo35, L.A. Spiller102, D.P. Spiteri55, M. Spousta139, A. Stabile66a,66b, R. Stamen59a, S. Stamm19, E. Stanecka82, R.W. Stanek6, C. Stanescu72a, M.M. Stanitzki44, B. Stapf118, S. Stapnes130, E.A. Starchenko140, G.H. Stark36, J. Stark56, S.H Stark39, P. Staroba137, P. Starovoitov59a, S. Stärz35, R. Staszewski82, M. Stegler44, P. Steinberg29, B. Stelzer149, H.J. Stelzer35, O. Stelzer-Chilton166a, H. Stenzel54, T.J. Stevenson90, G.A. Stewart55, M.C. Stockton127, G. Stoicea27b, P. Stolte51, S. Stonjek113, A. Straessner46, J. Strandberg151, S. Strandberg43a,43b, M. Strauss124, P. Strizenec28b, R. Ströhmer175, D.M. Strom127, R. Stroynowski41, A. Strubig48, S.A. Stucci29, B. Stugu17, J. Stupak124, N.A. Styles44, D. Su150, J. Su135, S. Suchek59a, Y. Sugaya129, M. Suk138, V.V. Sulin108, D.M.S. Sultan52, S. Sultansoy4c, T. Sumida83, S. Sun103, X. Sun3, K. Suruliz153, C.J.E. Suster154, M.R. Sutton153, S. Suzuki79, M. Svatos137, M. Swiatlowski36, S.P. Swift2, A. Sydorenko97, I. Sykora28a, T. Sykora139, D. Ta97, K. Tackmann44,ac, J. Taenzer159, A. Taffard169, R. Tafirout166a, E. Tahirovic90, N. Taiblum159, H. Takai29, R. Takashima84, E.H. Takasugi113, K. Takeda80, T. Takeshita147, Y. Takubo79, M. Talby99, A.A. Talyshev120b,120a, J. Tanaka161, M. Tanaka163, R. Tanaka128, R. Tanioka80, B.B. Tannenwald122, S. Tapia Araya144b, S. Tapprogge97, A. Tarek Abouelfadl Mohamed132, S. Tarem158, G. Tarna27b,f, G.F. Tartarelli66a, P. Tas139, M. Tasevsky137, T. Tashiro83, E. Tassi40b,40a, A. Tavares Delgado136a,136b, Y. Tayalati34e, A.C. Taylor116, A.J. Taylor48, G.N. Taylor102, P.T.E. Taylor102, W. Taylor166b, A.S. Tee87, P. Teixeira-Dias91, D. Temple149, H. Ten Kate35, P.K. Teng155, J.J. Teoh129, F. Tepel180, S. Terada79, K. Terashi161, J. Terron96, S. Terzo14, M. Testa49, R.J. Teuscher165,af, S.J. Thais181, T. Theveneaux-Pelzer44, F. Thiele39, J.P. Thomas21, A.S. Thompson55, P.D. Thompson21, L.A. Thomsen181, E. Thomson133, Y. Tian38, R.E. Ticse Torres51, V.O. Tikhomirov108,ap, Yu.A. Tikhonov120b,120a, S. Timoshenko110, P. Tipton181, S. Tisserant99, K. Todome163, S. Todorova-Nova5, S. Todt46, J. Tojo85, S. Tokár28a, K. Tokushuku79, E. Tolley122, K.G. Tomiwa32c, M. Tomoto115, L. Tompkins150,s, K. Toms116, B. Tong57, P. Tornambe50, E. Torrence127, H. Torres46, E. Torró Pastor145, C. Tosciri131, J. Toth99,ae, F. Touchard99, D.R. Tovey146, C.J. Treado121, T. Trefzger175, F. Tresoldi153, A. Tricoli29, I.M. Trigger166a, S. Trincaz-Duvoid132, M.F. Tripiana14, W. Trischuk165, B. Trocmé56, A. Trofymov128, C. Troncon66a, M. Trovatelli174, F. Trovato153, L. Truong32b, M. Trzebinski82, A. Trzupek82, F. Tsai44, J.C-L. Tseng131, P.V. Tsiareshka105, N. Tsirintanis9, V. Tsiskaridze152, E.G. Tskhadadze157a, I.I. Tsukerman109, V. Tsulaia18, S. Tsuno79, D. Tsybychev152, Y. Tu61b, A. Tudorache27b, V. Tudorache27b, T.T. Tulbure27a, A.N. Tuna57, S. Turchikhin77, D. Turgeman178, I. Turk Cakir4b,w, R. Turra66a, P.M. Tuts38, E. Tzovara97, 47 G. Ucchielli23b,23a, I. Ueda79, M. Ughetto43a,43b, F. Ukegawa167, G. Unal35, A. Undrus29, G. Unel169, F.C. Ungaro102, Y. Unno79, K. Uno161, J. Urban28b, P. Urquijo102, P. Urrejola97, G. Usai8, J. Usui79, L. Vacavant99, V. Vacek138, B. Vachon101, K.O.H. Vadla130, A. Vaidya92, C. Valderanis112, E. Valdes Santurio43a,43b, M. Valente52, S. Valentinetti23b,23a, A. Valero172, L. Valéry44, R.A. Vallance21, A. Vallier5, J.A. Valls Ferrer172, T.R. Van Daalen14, W. Van Den Wollenberg118, H. Van der Graaf118, P. Van Gemmeren6, J. Van Nieuwkoop149, I. Van Vulpen118, M.C. van Woerden118, M. Vanadia71a,71b, W. Vandelli35, A. Vaniachine164, P. Vankov118, R. Vari70a, E.W. Varnes7, C. Varni53b,53a, T. Varol41, D. Varouchas128, A. Vartapetian8, K.E. Varvell154, G.A. Vasquez144b, J.G. Vasquez181, F. Vazeille37, D. Vazquez Furelos14, T. Vazquez Schroeder101, J. Veatch51, V. Vecchio72a,72b, L.M. Veloce165, F. Veloso136a,136c, S. Veneziano70a, A. Ventura65a,65b, M. Venturi174, N. Venturi35, V. Vercesi68a, M. Verducci72a,72b, C.M. Vergel Infante76, W. Verkerke118, A.T. Vermeulen118, J.C. Vermeulen118, M.C. Vetterli149,aw, N. Viaux Maira144b, O. Viazlo94, I. Vichou171,*, T. Vickey146, O.E. Vickey Boeriu146, G.H.A. Viehhauser131, S. Viel18, L. Vigani131, M. Villa23b,23a, M. Villaplana Perez66a,66b, E. Vilucchi49, M.G. Vincter33, V.B. Vinogradov77, A. Vishwakarma44, C. Vittori23b,23a, I. Vivarelli153, S. Vlachos10, M. Vogel180, P. Vokac138, G. Volpi14, S.E. von Buddenbrock32c, E. Von Toerne24, V. Vorobel139, K. Vorobev110, M. Vos172, J.H. Vossebeld88, N. Vranjes16, M. Vranjes Milosavljevic16, V. Vrba138, M. Vreeswijk118, T. Šfiligoj89, R. Vuillermet35, I. Vukotic36, T. Ženiš28a, L. Živković16, P. Wagner24, W. Wagner180, J. Wagner-Kuhr112, H. Wahlberg86, S. Wahrmund46, K. Wakamiya80, V.M. Walbrecht113, J. Walder87, R. Walker112, W. Walkowiak148, V. Wallangen43a,43b, A.M. Wang57, C. Wang58b,f, F. Wang179, H. Wang18, H. Wang3, J. Wang154, J. Wang59b, P. Wang41, Q. Wang124, R.-J. Wang132, R. Wang58a, R. Wang6, S.M. Wang155, W.T. Wang58a, W. Wang155,q, W.X. Wang58a,ag, Y. Wang58a,am, Z. Wang58c, C. Wanotayaroj44, A. Warburton101, C.P. Ward31, D.R. Wardrope92, A. Washbrook48, P.M. Watkins21, A.T. Watson21, M.F. Watson21, G. Watts145, S. Watts98, B.M. Waugh92, A.F. Webb11, S. Webb97, C. Weber181, M.S. Weber20, S.A. Weber33, S.M. Weber59a, J.S. Webster6, A.R. Weidberg131, B. Weinert63, J. Weingarten51, M. Weirich97, C. Weiser50, P.S. Wells35, T. Wenaus29, T. Wengler35, S. Wenig35, N. Wermes24, M.D. Werner76, P. Werner35, M. Wessels59a, T.D. Weston20, K. Whalen127, N.L. Whallon145, A.M. Wharton87, A.S. White103, A. White8, M.J. White1, R. White144b, D. Whiteson169, B.W. Whitmore87, F.J. Wickens141, W. Wiedenmann179, M. Wielers141, C. Wiglesworth39, L.A.M. Wiik-Fuchs50, A. Wildauer113, F. Wilk98, H.G. Wilkens35, L.J. Wilkins91, H.H. Williams133, S. Williams31, C. Willis104, S. Willocq100, J.A. Wilson21, I. Wingerter-Seez5, E. Winkels153, F. Winklmeier127, O.J. Winston153, B.T. Winter24, M. Wittgen150, M. Wobisch93, A. Wolf97, T.M.H. Wolf118, R. Wolff99, M.W. Wolter82, H. Wolters136a,136c, V.W.S. Wong173, N.L. Woods143, S.D. Worm21, B.K. Wosiek82, K.W. Woźniak82, K. Wraight55, M. Wu36, S.L. Wu179, X. Wu52, Y. Wu58a, T.R. Wyatt98, B.M. Wynne48, S. Xella39, Z. Xi103, L. Xia176, D. Xu15a, H. Xu58a,f, L. Xu29, T. Xu142, W. Xu103, B. Yabsley154, S. Yacoob32a, K. Yajima129, D.P. Yallup92, D. Yamaguchi163, Y. Yamaguchi163, A. Yamamoto79, T. Yamanaka161, F. Yamane80, M. Yamatani161, T. Yamazaki161, Y. Yamazaki80, Z. Yan25, H.J. Yang58c,58d, H.T. Yang18, S. Yang75, Y. Yang161, Y. Yang155, Z. Yang17, W-M. Yao18, Y.C. Yap44, Y. Yasu79, E. Yatsenko58c, J. Ye41, S. Ye29, I. Yeletskikh77, E. Yigitbasi25, E. Yildirim97, K. Yorita177, K. Yoshihara133, C.J.S. Young35, C. Young150, J. Yu8, J. Yu76, X. Yue59a, S.P.Y. Yuen24, I. Yusuff31,a, B. Zabinski82, G. Zacharis10, E. Zaffaroni52, R. Zaidan14, A.M. Zaitsev140,ao, N. Zakharchuk44, J. Zalieckas17, S. Zambito57, D. Zanzi35, D.R. Zaripovas55, S.V. Zeißner45, C. Zeitnitz180, G. Zemaityte131, J.C. Zeng171, Q. Zeng150, O. Zenin140, D. Zerwas128, M. Zgubič131, D.F. Zhang58b, D. Zhang103, F. Zhang179, G. Zhang58a,ag, H. Zhang15c, J. Zhang6, L. Zhang50, L. Zhang58a, M. Zhang171, P. Zhang15c, R. Zhang58a,f, R. Zhang24, X. Zhang58b, Y. Zhang15d, Z. Zhang128, P. Zhao47, X. Zhao41, Y. Zhao58b,128,ak, Z. Zhao58a, A. Zhemchugov77, B. Zhou103, C. Zhou179, L. Zhou41, M.S. Zhou15d, M. Zhou152, N. Zhou58c, Y. Zhou7, C.G. Zhu58b, H.L. Zhu58a, H. Zhu15a, J. Zhu103, Y. Zhu58a, X. Zhuang15a, K. Zhukov108, V. Zhulanov120b,120a, A. Zibell175, 48 D. Zieminska63, N.I. Zimine77, S. Zimmermann50, Z. Zinonos113, M. Zinser97, M. Ziolkowski148, G. Zobernig179, A. Zoccoli23b,23a, K. Zoch51, T.G. Zorbas146, R. Zou36, M. Zur Nedden19, L. Zwalinski35. 1Department of Physics, University of Adelaide, Adelaide; Australia. 2Physics Department, SUNY Albany, Albany NY; United States of America. 3Department of Physics, University of Alberta, Edmonton AB; Canada. 4(a)Department of Physics, Ankara University, Ankara;(b)Istanbul Aydin University, Istanbul;(c)Division of Physics, TOBB University of Economics and Technology, Ankara; Turkey. 5LAPP, Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS/IN2P3, Annecy; France. 6High Energy Physics Division, Argonne National Laboratory, Argonne IL; United States of America. 7Department of Physics, University of Arizona, Tucson AZ; United States of America. 8Department of Physics, University of Texas at Arlington, Arlington TX; United States of America. 9Physics Department, National and Kapodistrian University of Athens, Athens; Greece. 10Physics Department, National Technical University of Athens, Zografou; Greece. 11Department of Physics, University of Texas at Austin, Austin TX; United States of America. 12(a)Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul;(b)Istanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul;(c)Department of Physics, Bogazici University, Istanbul;(d)Department of Physics Engineering, Gaziantep University, Gaziantep; Turkey. 13Institute of Physics, Azerbaijan Academy of Sciences, Baku; Azerbaijan. 14Institut de Física d’Altes Energies (IFAE), Barcelona Institute of Science and Technology, Barcelona; Spain. 15(a)Institute of High Energy Physics, Chinese Academy of Sciences, Beijing;(b)Physics Department, Tsinghua University, Beijing;(c)Department of Physics, Nanjing University, Nanjing;(d)University of Chinese Academy of Science (UCAS), Beijing; China. 16Institute of Physics, University of Belgrade, Belgrade; Serbia. 17Department for Physics and Technology, University of Bergen, Bergen; Norway. 18Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA; United States of America. 19Institut für Physik, Humboldt Universität zu Berlin, Berlin; Germany. 20Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern; Switzerland. 21School of Physics and Astronomy, University of Birmingham, Birmingham; United Kingdom. 22Centro de Investigaciónes, Universidad Antonio Nariño, Bogota; Colombia. 23(a)Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna;(b)INFN Sezione di Bologna; Italy. 24Physikalisches Institut, Universität Bonn, Bonn; Germany. 25Department of Physics, Boston University, Boston MA; United States of America. 26Department of Physics, Brandeis University, Waltham MA; United States of America. 27(a)Transilvania University of Brasov, Brasov;(b)Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest;(c)Department of Physics, Alexandru Ioan Cuza University of Iasi, Iasi;(d)National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj-Napoca;(e)University Politehnica Bucharest, Bucharest;( f )West University in Timisoara, Timisoara; Romania. 28(a)Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava;(b)Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice; Slovak Republic. 49 29Physics Department, Brookhaven National Laboratory, Upton NY; United States of America. 30Departamento de Física, Universidad de Buenos Aires, Buenos Aires; Argentina. 31Cavendish Laboratory, University of Cambridge, Cambridge; United Kingdom. 32(a)Department of Physics, University of Cape Town, Cape Town;(b)Department of Mechanical Engineering Science, University of Johannesburg, Johannesburg;(c)School of Physics, University of the Witwatersrand, Johannesburg; South Africa. 33Department of Physics, Carleton University, Ottawa ON; Canada. 34(a)Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca;(b)Centre National de l’Energie des Sciences Techniques Nucleaires (CNESTEN), Rabat;(c)Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech;(d)Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda;(e)Faculté des sciences, Université Mohammed V, Rabat; Morocco. 35CERN, Geneva; Switzerland. 36Enrico Fermi Institute, University of Chicago, Chicago IL; United States of America. 37LPC, Université Clermont Auvergne, CNRS/IN2P3, Clermont-Ferrand; France. 38Nevis Laboratory, Columbia University, Irvington NY; United States of America. 39Niels Bohr Institute, University of Copenhagen, Copenhagen; Denmark. 40(a)Dipartimento di Fisica, Università della Calabria, Rende;(b)INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati; Italy. 41Physics Department, Southern Methodist University, Dallas TX; United States of America. 42Physics Department, University of Texas at Dallas, Richardson TX; United States of America. 43(a)Department of Physics, Stockholm University;(b)Oskar Klein Centre, Stockholm; Sweden. 44Deutsches Elektronen-Synchrotron DESY, Hamburg and Zeuthen; Germany. 45Lehrstuhl für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund; Germany. 46Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden; Germany. 47Department of Physics, Duke University, Durham NC; United States of America. 48SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh; United Kingdom. 49INFN e Laboratori Nazionali di Frascati, Frascati; Italy. 50Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg; Germany. 51II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen; Germany. 52Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève; Switzerland. 53(a)Dipartimento di Fisica, Università di Genova, Genova;(b)INFN Sezione di Genova; Italy. 54II. Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen; Germany. 55SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow; United Kingdom. 56LPSC, Université Grenoble Alpes, CNRS/IN2P3, Grenoble INP, Grenoble; France. 57Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA; United States of America. 58(a)Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei;(b)Institute of Frontier and Interdisciplinary Science and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Qingdao;(c)School of Physics and Astronomy, Shanghai Jiao Tong University, KLPPAC-MoE, SKLPPC, Shanghai;(d)Tsung-Dao Lee Institute, Shanghai; China. 59(a)Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg;(b)Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; Germany. 60Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima; Japan. 61(a)Department of Physics, Chinese University of Hong Kong, Shatin, N.T., Hong Kong;(b)Department of Physics, University of Hong Kong, Hong Kong;(c)Department of Physics and Institute for Advanced 50 Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; China. 62Department of Physics, National Tsing Hua University, Hsinchu; Taiwan. 63Department of Physics, Indiana University, Bloomington IN; United States of America. 64(a)INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine;(b)ICTP, Trieste;(c)Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine; Italy. 65(a)INFN Sezione di Lecce;(b)Dipartimento di Matematica e Fisica, Università del Salento, Lecce; Italy. 66(a)INFN Sezione di Milano;(b)Dipartimento di Fisica, Università di Milano, Milano; Italy. 67(a)INFN Sezione di Napoli;(b)Dipartimento di Fisica, Università di Napoli, Napoli; Italy. 68(a)INFN Sezione di Pavia;(b)Dipartimento di Fisica, Università di Pavia, Pavia; Italy. 69(a)INFN Sezione di Pisa;(b)Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa; Italy. 70(a)INFN Sezione di Roma;(b)Dipartimento di Fisica, Sapienza Università di Roma, Roma; Italy. 71(a)INFN Sezione di Roma Tor Vergata;(b)Dipartimento di Fisica, Università di Roma Tor Vergata, Roma; Italy. 72(a)INFN Sezione di Roma Tre;(b)Dipartimento di Matematica e Fisica, Università Roma Tre, Roma; Italy. 73(a)INFN-TIFPA;(b)Università degli Studi di Trento, Trento; Italy. 74Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck; Austria. 75University of Iowa, Iowa City IA; United States of America. 76Department of Physics and Astronomy, Iowa State University, Ames IA; United States of America. 77Joint Institute for Nuclear Research, Dubna; Russia. 78(a)Departamento de Engenharia Elétrica, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora;(b)Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro;(c)Universidade Federal de São João del Rei (UFSJ), São João del Rei;(d)Instituto de Física, Universidade de São Paulo, São Paulo; Brazil. 79KEK, High Energy Accelerator Research Organization, Tsukuba; Japan. 80Graduate School of Science, Kobe University, Kobe; Japan. 81(a)AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow;(b)Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow; Poland. 82Institute of Nuclear Physics Polish Academy of Sciences, Krakow; Poland. 83Faculty of Science, Kyoto University, Kyoto; Japan. 84Kyoto University of Education, Kyoto; Japan. 85Research Center for Advanced Particle Physics and Department of Physics, Kyushu University, Fukuoka ; Japan. 86Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata; Argentina. 87Physics Department, Lancaster University, Lancaster; United Kingdom. 88Oliver Lodge Laboratory, University of Liverpool, Liverpool; United Kingdom. 89Department of Experimental Particle Physics, Jožef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana; Slovenia. 90School of Physics and Astronomy, Queen Mary University of London, London; United Kingdom. 91Department of Physics, Royal Holloway University of London, Egham; United Kingdom. 92Department of Physics and Astronomy, University College London, London; United Kingdom. 93Louisiana Tech University, Ruston LA; United States of America. 94Fysiska institutionen, Lunds universitet, Lund; Sweden. 95Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne; France. 96Departamento de Física Teorica C-15 and CIAFF, Universidad Autónoma de Madrid, Madrid; Spain. 51 97Institut für Physik, Universität Mainz, Mainz; Germany. 98School of Physics and Astronomy, University of Manchester, Manchester; United Kingdom. 99CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille; France. 100Department of Physics, University of Massachusetts, Amherst MA; United States of America. 101Department of Physics, McGill University, Montreal QC; Canada. 102School of Physics, University of Melbourne, Victoria; Australia. 103Department of Physics, University of Michigan, Ann Arbor MI; United States of America. 104Department of Physics and Astronomy, Michigan State University, East Lansing MI; United States of America. 105B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk; Belarus. 106Research Institute for Nuclear Problems of Byelorussian State University, Minsk; Belarus. 107Group of Particle Physics, University of Montreal, Montreal QC; Canada. 108P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow; Russia. 109Institute for Theoretical and Experimental Physics (ITEP), Moscow; Russia. 110National Research Nuclear University MEPhI, Moscow; Russia. 111D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow; Russia. 112Fakultät für Physik, Ludwig-Maximilians-Universität München, München; Germany. 113Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München; Germany. 114Nagasaki Institute of Applied Science, Nagasaki; Japan. 115Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya; Japan. 116Department of Physics and Astronomy, University of New Mexico, Albuquerque NM; United States of America. 117Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen; Netherlands. 118Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam; Netherlands. 119Department of Physics, Northern Illinois University, DeKalb IL; United States of America. 120(a)Budker Institute of Nuclear Physics, SB RAS, Novosibirsk;(b)Novosibirsk State University Novosibirsk; Russia. 121Department of Physics, New York University, New York NY; United States of America. 122Ohio State University, Columbus OH; United States of America. 123Faculty of Science, Okayama University, Okayama; Japan. 124Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK; United States of America. 125Department of Physics, Oklahoma State University, Stillwater OK; United States of America. 126Palacký University, RCPTM, Joint Laboratory of Optics, Olomouc; Czech Republic. 127Center for High Energy Physics, University of Oregon, Eugene OR; United States of America. 128LAL, Université Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay; France. 129Graduate School of Science, Osaka University, Osaka; Japan. 130Department of Physics, University of Oslo, Oslo; Norway. 131Department of Physics, Oxford University, Oxford; United Kingdom. 132LPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNRS/IN2P3, Paris; France. 133Department of Physics, University of Pennsylvania, Philadelphia PA; United States of America. 134Konstantinov Nuclear Physics Institute of National Research Centre "Kurchatov Institute", PNPI, St. Petersburg; Russia. 135Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA; United States of 52 America. 136(a)Laboratório de Instrumentação e Física Experimental de Partículas - LIP;(b)Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa;(c)Departamento de Física, Universidade de Coimbra, Coimbra;(d)Centro de Física Nuclear da Universidade de Lisboa, Lisboa;(e)Departamento de Física, Universidade do Minho, Braga;( f )Departamento de Física Teorica y del Cosmos, Universidad de Granada, Granada (Spain);(g)Dep Física and CEFITEC of Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica; Portugal. 137Institute of Physics, Academy of Sciences of the Czech Republic, Prague; Czech Republic. 138Czech Technical University in Prague, Prague; Czech Republic. 139Charles University, Faculty of Mathematics and Physics, Prague; Czech Republic. 140State Research Center Institute for High Energy Physics, NRC KI, Protvino; Russia. 141Particle Physics Department, Rutherford Appleton Laboratory, Didcot; United Kingdom. 142IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette; France. 143Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA; United States of America. 144(a)Departamento de Física, Pontificia Universidad Católica de Chile, Santiago;(b)Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso; Chile. 145Department of Physics, University of Washington, Seattle WA; United States of America. 146Department of Physics and Astronomy, University of Sheffield, Sheffield; United Kingdom. 147Department of Physics, Shinshu University, Nagano; Japan. 148Department Physik, Universität Siegen, Siegen; Germany. 149Department of Physics, Simon Fraser University, Burnaby BC; Canada. 150SLAC National Accelerator Laboratory, Stanford CA; United States of America. 151Physics Department, Royal Institute of Technology, Stockholm; Sweden. 152Departments of Physics and Astronomy, Stony Brook University, Stony Brook NY; United States of America. 153Department of Physics and Astronomy, University of Sussex, Brighton; United Kingdom. 154School of Physics, University of Sydney, Sydney; Australia. 155Institute of Physics, Academia Sinica, Taipei; Taiwan. 156Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei; Taiwan. 157(a)E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi;(b)High Energy Physics Institute, Tbilisi State University, Tbilisi; Georgia. 158Department of Physics, Technion, Israel Institute of Technology, Haifa; Israel. 159Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv; Israel. 160Department of Physics, Aristotle University of Thessaloniki, Thessaloniki; Greece. 161International Center for Elementary Particle Physics and Department of Physics, University of Tokyo, Tokyo; Japan. 162Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo; Japan. 163Department of Physics, Tokyo Institute of Technology, Tokyo; Japan. 164Tomsk State University, Tomsk; Russia. 165Department of Physics, University of Toronto, Toronto ON; Canada. 166(a)TRIUMF, Vancouver BC;(b)Department of Physics and Astronomy, York University, Toronto ON; Canada. 167Division of Physics and Tomonaga Center for the History of the Universe, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba; Japan. 168Department of Physics and Astronomy, Tufts University, Medford MA; United States of America. 169Department of Physics and Astronomy, University of California Irvine, Irvine CA; United States of 53 America. 170Department of Physics and Astronomy, University of Uppsala, Uppsala; Sweden. 171Department of Physics, University of Illinois, Urbana IL; United States of America. 172Instituto de Física Corpuscular (IFIC), Centro Mixto Universidad de Valencia - CSIC, Valencia; Spain. 173Department of Physics, University of British Columbia, Vancouver BC; Canada. 174Department of Physics and Astronomy, University of Victoria, Victoria BC; Canada. 175Fakultät für Physik und Astronomie, Julius-Maximilians-Universität Würzburg, Würzburg; Germany. 176Department of Physics, University of Warwick, Coventry; United Kingdom. 177Waseda University, Tokyo; Japan. 178Department of Particle Physics, Weizmann Institute of Science, Rehovot; Israel. 179Department of Physics, University of Wisconsin, Madison WI; United States of America. 180Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal; Germany. 181Department of Physics, Yale University, New Haven CT; United States of America. 182Yerevan Physics Institute, Yerevan; Armenia. a Also at Department of Physics, University of Malaya, Kuala Lumpur; Malaysia. b Also at Borough of Manhattan Community College, City University of New York, NY; United States of America. c Also at California State University, East Bay; United States of America. d Also at Centre for High Performance Computing, CSIR Campus, Rosebank, Cape Town; South Africa. e Also at CERN, Geneva; Switzerland. f Also at CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille; France. g Also at Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève; Switzerland. h Also at Departament de Fisica de la Universitat Autonoma de Barcelona, Barcelona; Spain. i Also at Departamento de Física Teorica y del Cosmos, Universidad de Granada, Granada (Spain); Spain. j Also at Department of Applied Physics and Astronomy, University of Sharjah, Sharjah; United Arab Emirates. k Also at Department of Financial and Management Engineering, University of the Aegean, Chios; Greece. l Also at Department of Physics and Astronomy, University of Louisville, Louisville, KY; United States of America. m Also at Department of Physics and Astronomy, University of Sheffield, Sheffield; United Kingdom. n Also at Department of Physics, California State University, Fresno CA; United States of America. o Also at Department of Physics, California State University, Sacramento CA; United States of America. p Also at Department of Physics, King’s College London, London; United Kingdom. q Also at Department of Physics, Nanjing University, Nanjing; China. r Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg; Russia. s Also at Department of Physics, Stanford University; United States of America. t Also at Department of Physics, University of Fribourg, Fribourg; Switzerland. u Also at Department of Physics, University of Michigan, Ann Arbor MI; United States of America. v Also at Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa; Italy. w Also at Giresun University, Faculty of Engineering, Giresun; Turkey. x Also at Graduate School of Science, Osaka University, Osaka; Japan. y Also at Hellenic Open University, Patras; Greece. z Also at Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest; Romania. 54 aa Also at II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen; Germany. ab Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona; Spain. ac Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg; Germany. ad Also at Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen; Netherlands. ae Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest; Hungary. af Also at Institute of Particle Physics (IPP); Canada. ag Also at Institute of Physics, Academia Sinica, Taipei; Taiwan. ah Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku; Azerbaijan. ai Also at Institute of Theoretical Physics, Ilia State University, Tbilisi; Georgia. aj Also at Istanbul University, Dept. of Physics, Istanbul; Turkey. ak Also at LAL, Université Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay; France. al Also at Louisiana Tech University, Ruston LA; United States of America. am Also at LPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNRS/IN2P3, Paris; France. an Also at Manhattan College, New York NY; United States of America. ao Also at Moscow Institute of Physics and Technology State University, Dolgoprudny; Russia. ap Also at National Research Nuclear University MEPhI, Moscow; Russia. aq Also at Near East University, Nicosia, North Cyprus, Mersin; Turkey. ar Also at Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg; Germany. as Also at School of Physics, Sun Yat-sen University, Guangzhou; China. at Also at The City College of New York, New York NY; United States of America. au Also at The Collaborative Innovation Center of Quantum Matter (CICQM), Beijing; China. av Also at Tomsk State University, Tomsk, and Moscow Institute of Physics and Technology State University, Dolgoprudny; Russia. aw Also at TRIUMF, Vancouver BC; Canada. ax Also at Universita di Napoli Parthenope, Napoli; Italy. ∗ Deceased 55