COMPARISON AND OSCILLATION THEOREM FOR
SECOND-ORDER NONLINEAR NEUTRAL
DIFFERENCE EQUATIONS OF MIXED TYPE

E. THANDAPANI, N. KAVITHA, AND S. PINELAS

Ramanujan Institute for Advanced Study in Mathematics,
University of Madras, Chennai 600 005, India
Departamento de Matemática, Universidade dos Açores,
Ponta Delgada, Portugal

ABSTRACT. In this paper, we establish some comparison theorems for the oscillation of second order neutral difference equations of mixed type

\[\Delta (a_n \Delta (x_n + b_n x_{n-\sigma_1} + c_n x_{n+\sigma_2})^\alpha) + q_n x_{n-\tau_1}^{\beta} + p_n x_{n+\tau_2}^{\beta} = 0, \]

where \(\alpha \) and \(\beta \) are ratio of odd positive integers, \(\sigma_1, \sigma_2, \tau_1 \) and \(\tau_2 \) are positive integers. Our results are new even if \(p_n = c_n = 0 \). Examples are provided to illustrate the results.

AMS (MOS) Subject Classification. 39A10.

1. INTRODUCTION

In this paper, we shall study the oscillatory behavior of the second order nonlinear neutral difference equation of mixed type

(1.1) \[\Delta (a_n \Delta (x_n + b_n x_{n-\sigma_1} + c_n x_{n+\sigma_2})^\alpha) + q_n x_{n-\tau_1}^{\beta} + p_n x_{n+\tau_2}^{\beta} = 0, \]

where \(n \geq n_0 \in \mathbb{N} \), subject to the following conditions:

(H1) \(\{a_n\} \) is a positive sequence for all \(n \geq n_0 \) and \(\sum_{n=n_0}^{\infty} \frac{1}{a_n} = \infty \);

(H2) \(\{b_n\} \) and \(\{c_n\} \) are nonnegative sequences such that \(0 \leq b_n \leq b \) and \(0 \leq c_n \leq c \), where \(b \) and \(c \) are constants;

(H3) \(\{p_n\} \) and \(\{q_n\} \) are nonnegative real sequences and not eventually zero for many values of \(n \);

(H4) \(\sigma_1, \sigma_2, \tau_1 \) and \(\tau_2 \) are nonnegative integers and \(\alpha \) and \(\beta \) are ratio of odd positive integers.

We put \(z_n = (x_n + b_n x_{n-\sigma_1} + c_n x_{n+\sigma_2})^\alpha \). By a solution of equation (1.1), we mean a real sequence \(\{x_n\} \) defined for all \(n \geq n_0 - \max \{\sigma_1, \tau_1\} \), and satisfies equation (1.1) for