Discalculia
Contributo do Geogebra nas Crianças com NEE

Nélia José Pimenta

Provas destinadas à obtenção do grau de Mestre em Necessidades Educativas Especiais – Cognição e Motricidade
Outubro de 2013

Instituto Superior de Educação e Ciências
INSTITUTO SUPERIOR DE EDUCAÇÃO E CIÊNCIAS
Escola de Educação e Desenvolvimento Humano

Provas para obtenção do grau de Mestre em Necessidades Educativas
Especiais – Cognição e Motricidade

DISCALCULIA
Contributo do Geogebra nas Crianças com NEE

Autora: Nélia José Pimenta

Orientador: Professor Doutor Carlos Pereira dos Santos

Outubro de 2013
Conteúdo

PARTE I .. 1
1-INTRODUÇÃO .. 1

2- ENQUADRAMENTO TEÓRICO DA NEE ... 3
 2.1- Crianças com necessidades educativas especiais ... 3
 2.1.1- O relatório “Warnock Report” .. 3
 2.1.2- Declaração de Salamanca e a escola inclusiva ... 4
 2.1.3- Legislação relativa ao ensino especial ... 5
 2.1.3.1. Discalculia ... 6
 2.1.3.2. Tipos de discalculia .. 8
 2.1.3.3. Causas da Discalculia ... 8
 2.1.3.4. Possibilidades de intervenção em crianças diagnosticadas com discalculia .. 10
 2.1.3.5. Teste diagnóstico .. 12
 2.1.4- Discalculia ... 15

3- ENQUADRAMENTO MATEMÁTICO ... 15
 3.1- O currículo da matemática no ensino básico ... 15
 3.2- Finalidade do ensino da Matemática ... 16
 3.3- Objetivos gerais do ensino da Matemática .. 17
 3.4- Competências matemáticas ... 19
 3.5. Tema «Organização e Tratamento de Dados» ... 20

4- TECNOLOGIAS NO ENSINO ... 25
 4.1- A introdução das TIC no ensino especial ... 25
 4.2- As TIC e o ensino aprendizagem ... 26
 4.3- O software – Geogebra .. 29

PARTE II .. 31
1-OBJETIVOS DO ESTUDO .. 31

2-CARACTERIZAÇÃO DA AMOSTRA .. 33

3-ESTUDO DE CASO .. 35

4-METODOLOGIA APLICADA ... 38

5-DESCRIÇÃO DOS DADOS OBTIDOS .. 40

6-ANÁLISE ESTATÍSTICA DOS RESULTADOS ... 44
 6.1.- Comparação global ... 44
 6.2- Alunos com NEE ... 45

7-CONCLUSÕES ... 48

REFERÊNCIAS BIBLIOGRÁFICAS .. 50

ANEXOS ... 53
Índice de Figuras

Figura 1 - Programa de Matemática, 2001 ... 18
Figura 2 – Programa de matemática (pag. 52). ... 30
Figura 3: Programa de matemática do 2º ciclo: Organização e Tratamento de Dados ... 35
Figura 4: Situação com recurso ao geogebra ... 37
Figura 5: Resultados individuais obtidos no pré-teste .. 40
Figura 6: Distribuição dos resultados do pré-teste ... 41
Figura 7: Resultados individuais obtidos no pós-teste .. 42
Figura 8: Distribuição dos resultados do pós-teste ... 42
Figura 9: Resultados dos dois testes: apresentação conjunta 43
Figura 10: Comparação global de desempenho .. 45

Índice de Anexos

ANEXO 1: Teste de Discalculia ... 53
ANEXO 2: Teste pré-diagnóstico ... 56
ANEXO 3: Pré-teste .. 59
ANEXO 4: Pós-teste ... 60
ANEXO 5: Resultados do pré-teste ... 61
ANEXO 6: Resultados pós-teste .. 62
Dedico aos meus pais,
que sempre me ajudaram.

Dedico às minhas filhas Laura e Leonor
que tantas vezes prescindiram da mamã
para que este sonho se tornasse realidade.

E claro, ao meu marido, que apesar de tudo,
sempre acreditou num final feliz.
Agradeço a DEUS por todas as pessoas que colocou no meu caminho para que eu conseguisse realizar esta caminhada.
Resumo

Hoje em dia os alunos têm inúmeras dificuldades na disciplina de Matemática, nomeadamente na resolução de problemas e em certas competências envolvendo cálculos. Em particular, a Discalculia traduz um caso extremo deste tipo de dificuldades, sendo uma Necessidade Educativa Especial (NEE) classificada como Dificuldade de Aprendizagem Específica (DAE).

A escola e toda a comunidade educativa têm-se mostrado preocupados com o insucesso dos alunos, sobretudo os que revelam dificuldades na aprendizagem das operações matemáticas e falhas no raciocínio lógico-matemático, derivadas de desordens de caráter neuro-processológico, sendo que estes, em termos de inteligência, apresentam parâmetros considerados normais, podendo até sobressair noutras áreas. É frequente alunos assim diagnosticados não revelarem problemas afetivos ou emocionais.

Aos professores pede-se que estejam atentos e que sinalizem os alunos o quanto antes, a fim de se poder intervir e atenuar os transtornos destas crianças, fomentando estratégias que levem ao sucesso.

Este estudo pretendeu saber se as tecnologias de informação e comunicação (TIC), mais concretamente o programa Geogebra, facilitam a aprendizagem de alunos com NEE, nomeadamente os ligados à Discalculia.

Para a realização deste estudo foram criados dois grupos, um de controle e outro onde foi efetuada a intervenção tecnológica. A amostra foi composta por vinte e dois alunos do segundo ciclo a frequentar uma escola de Lisboa.

Os resultados obtidos apontam para uma melhoria na aquisição dos conteúdos após a intervenção recorrendo a uma situação criada com o auxílio do programa matemático Geogebra.

Palavras-Chave: Necessidades Educativas Especiais. Discalculia. Geogebra.
Abstract

Nowadays, students have many difficulties in learning Mathematics, including problem solving and calculation skills. Particularly, Dyscalculia is an extreme case of such difficulties, being a Special Educational Need (SEN) classified as Specific Learning Difficulty (SpLDs).

The whole school community has proven to be worried about the failure of students, particularly those that, due neural disorders, reveal difficulties in learning mathematical procedures and logical reasoning. Usually, these students show normal performance in terms of intelligence. They can be excellent in other subjects. Often, these students do not present affective or emotional problems as well.

Teachers are asked to be vigilant, identifying dyscalculic students as soon as possible in order to intervene and build effective strategies.

This work sought to ascertain whether the technologies for mathematics education, specifically the well-known software Geogebra, improve learning of mathematics of SEN students, including those linked to Dyscalculia.

For this work two groups were created; a control group and a treatment group which underwent a technological intervention with geogebra. The sample consisted of twenty-two students of the 5th grade of a school in Lisbon.

The results indicate an improvement in the acquisition of some mathematical skills after the intervention using a situation created with Geogebra.

Keywords: Special Educational Need. Dyscalculia. Geogebra.
PARTE I

1-INTRODUÇÃO

Esta dissertação surge no âmbito da realização do mestrado em necessidades educativas especiais (NEE), domínio cognito e motor, no Instituto Superior de Educação e Ciência. O tema de investigação centra-se no estudo do uso das tecnologias de informação e comunicação (TIC), designadamente o programa Geogebra, aplicado a crianças e jovens com NEE.

Esta temática interessa-nos devido à importância do ensino da matemática e do interesse do uso das TIC no processo educativo dos alunos com NEE. Sempre houve alunos com dificuldades de aprendizagem, mas nem sempre estes alunos tiveram acesso à educação. No entanto, atualmente as nossas escolas integram a maioria dos alunos com NEE. Deste modo, as escolas têm necessidade de encontrar formas e meios de responder com eficácia às necessidades educativas de uma população escolar heterogénea, devendo ser construído um espaço de aceitação que a todos responda de forma diferenciada.

As TIC são um recurso pedagógico no processo ensino-aprendizagem destes alunos, são um meio de motivação, socialização e inclusão para eles. Este trabalho de investigação trata-se de um estudo de caso. Optou-se por um método qualitativo, na tentativa de descobrir se o uso do programa Geogebra melhora o ensino da estatística, em crianças com pré-diagnóstico de discalculia, NEE da nossa amostra.

O presente trabalho está organizado em duas partes. A primeira parte é constituída por quatro capítulos que representam o enquadramento teórico que baliza este estudo, a discalculia, o enquadramento matemático e as tecnologias de ensino. Na segunda parte apresentamos o estudo empírico desta investigação, nomeadamente os objetivos do estudo, a caracterização da amostra, o estudo de caso, a metodologia aplicada, a descrição dos dados obtidos, a análise estatística dos resultados e as conclusões.

No que concerne à primeira parte, o primeiro capítulo trata da caraterização das necessidades educativas especiais. Foi feita menção ao conceito de NEE, referindo dois marcos significativos (relatório Warnock Report e declaração de Salamanca) que mudaram a perspetiva das NEE. Na sequência destes marcos foi feita a descrição de escola inclusiva.
No segundo capítulo são descritos os vários tipos de discalculia, bem como as dificuldades mais sentidas pelos alunos com essa problemática e algumas dicas para facilitar o seu trabalho.

No terceiro capítulo são abordadas as competências matemáticas relativas ao programa de matemática do 6º ano do ensino básico, designadamente, da unidade temática de organização e tratamento de dados (estatística). São ainda abordadas as competências transversais desta disciplina.

Em relação ao quarto capítulo detalha-se a forma como as TIC abriram mais um caminho em Portugal, no que diz respeito ao caso particular da matemática. Também se ilustra a importância das TIC nas aulas de Matemática, sendo, em particular, caracterizado o programa Geogebra, utilizado no presente trabalho.

Relativamente à segunda parte, estudo empírico, são fundamentados no quinto capítulo as opções metodológicas, problemática, os objetivos, o método e os procedimentos de recolha e análise de dados. Faz-se também uma breve caracterização da nossa amostra.

No sexto capítulo, é efetuada a análise e discussão dos resultados.

Na conclusão apresentamos as limitações da presente investigação deixando em aberto algumas questões suscetíveis de serem trabalhadas no futuro, a fim de ajudar a consolidar o conhecimento na área do ensino da matemática a crianças com NEE.

É flagrante a preocupação dos professores, pais, alunos e tutela, relativamente ao insucesso educativo na Matemática. Este deve-se a muitas razões, entre elas destacam-se as perturbações físicas, motoras, sensoriais, intelectuais, privação cultural ou também derivado a desordens que se manifestam sobretudo na aquisição e uso de aptidões, que se englobam nas Dificuldades de Aprendizagem, concretamente na Discalculia.

Devido a este insucesso, pretende-se com este estudo tentar encontrar alguma estratégia possível, para que na sala de aula e sem expor os alunos com NEE, se consiga trabalhar conteúdos de um modo lúdico e recorrendo a programas informáticos, como o Geogebra, promovendo assim o sucesso.

Foi com base nesta questão que nos pareceu pertinente o presente estudo, onde se pretende averiguar se intervindo com o Geogebra, este promove ou não o sucesso.

Para levar a cabo a referida investigação, formulámos o problema a analisar e com base no mesmo, definimos os objetivos a alcançar, o instrumento e os sujeitos que integram este estudo.
2- ENQUADRAMENTO TEÓRICO DA NEE

2.1- Crianças com necessidades educativas especiais

Tradicionalmente o termo Educação Especial (EE) era utilizado para designar um tipo de educação diferente do praticado no ensino regular. A criança diagnosticada com uma deficiência, incapacidade ou diminuição era enviada para uma unidade ou centro específico. Com a Normalização de Serviços tudo isso muda e passa a falar-se de Integração Escolar.

Antigamente a única causa considerada para as dificuldades sentidas pelos alunos era o que estava no seu interior, causadas pelas suas próprias características. Hoje essas culpas são extensíveis também à escola por, muitas vezes, não se adaptar às necessidades da criança. Como consequência, surge o termo de Necessidades Educativas Especiais (NEE).

2.1.1- O relatório “Warnock Report”

Em 1978, o Warnock Report propôs uma nova concepção educativa. Não deveria haver diferenças nos objetivos educacionais quer se tratasse de alunos com ou sem dificuldades de aprendizagem.

Para Mary Warnock, o principal objetivo devia ser o de dar a conhecer o mundo que rodeia as crianças e responsabilizá-las pela sua intervenção. Outra grande preocupação da autora era que fossem dadas aos alunos condições para que estes se tornassem jovens auto-suficientes e que tivessem alguma preparação para o mundo do trabalho, de modo a que pudessem controlar a sua vida e a sua independência. O relatório ia mais longe, e prevê que uma em cinco crianças poderia ter NEE em algum momento do seu percurso escolar. Deste modo a percentagem de crianças com NEE passa para 20% em vez da anterior percentagem de 2% de deficientes. Assim este relatório trata o conceito Educação Especial de uma forma muito mais abrangente.

Como tal a resposta às necessidades da criança devem ser efetuadas com base num relatório pormenorizado com as reais necessidades da mesma. Esta nova forma de
encarar a Educação Especial levou à integração generalizada, pois as Escolas Especiais não podiam dar resposta individualizada a um número tão elevado de casos.

No relatório considera-se ainda que as Escolas Especiais não deviam ser encerradas, devendo ser adaptadas às necessidades locais; por exemplo, podiam ser transformadas em centros de recursos, locais de formação especializada, centros de aconselhamento para pais e profissionais ou ainda manter-se como eram para dar assistência aos casos mais graves de crianças com deficiências severas ou profundas.

Surpreendentemente, em 2005, Mary Warnock veio anunciar que tinha alterado alguns dos seus pontos de vista relativamente ao facto de algumas crianças com necessidades educativas especiais serem educadas em escolas regulares. Referia-se aos casos mais graves de crianças com NEE integradas nas escolas regulares. Não haveria problema, se estivessem a usufruir de um atendimento especializado que fosse de encontro às suas necessidades. No entanto, em alguns casos, estes alunos eram colocados nas escolas públicas, sem que se preocupassem com as especificidades de cada um e sem os recursos quer humanos quer materiais necessários. Deste modo, estes alunos acabavam por não evoluir, nem em termos de conhecimentos, nem de socialização. A sua filosofia, lógica na teoria, acabava por não funcionar na prática, porque tanto as escolas como as autoridades locais se demitiam das suas responsabilidades.

2.1.2- Declaração de Salamanca e a escola inclusiva

Em 1994, em Salamanca na Espanha, foi elaborado um documento, durante a Conferência Mundial sobre Educação Especial, que tinha como objetivo definir quais as principais diretrizes para a reforma de políticas e sistemas educacionais que permitissem um melhor movimento de inclusão social.

A Declaração de Salamanca foi um documento fundamental a nível mundial para promover a inclusão social, uma vez que amplia o conceito de necessidades educativas especiais. Este documento passou a incluir não só as crianças portadoras de deficiências, mas também todas aquelas que estejam com dificuldades na escola, sejam estas temporárias ou permanentes, as que repetem de ano continuadamente, as que precisam trabalhar, as que vivem na rua, as que são vítimas de guerra ou conflitos armados, as que sofrem de abusos emocionais e sexuais.
De acordo com o documento, “o princípio fundamental da escola inclusiva é o de que todas as crianças deveriam aprender juntas, independentemente de quaisquer dificuldades ou diferenças que possam ter.” Para que tal aconteça é necessário que as escolas conheçam as necessidades individuais de cada um dos seus alunos; para que possam elaborar as adequações curriculares; específicas para o ritmo de cada um. A escola deverá providenciar também todo o apoio extra que estas crianças necessitem para assegurar uma educação efetiva.

2.1.3- Legislação relativa ao ensino especial

As crianças diagnosticadas com NEE, até aos anos 70 do século passado, não tinham direito à educação pública. No nosso país, chegava-se mesmo a considerar que o contacto destas com as ditas “normais” era prejudicial.

Hoje em dia o decreto em vigor para o ensino especial é o decreto-lei nº.3/2008, de 7 de janeiro. Estão nele definidos os apoios especializados para os alunos com NEE de caráter permanente: “Os apoios especializados visam responder às necessidades educativas especiais dos alunos com limitações significativas ao nível da atividade e da participação, num ou vários domínios de vida, decorrentes de alterações funcionais e estruturais, de caráter permanente, resultando em dificuldades continuadas ao nível da comunicação, da aprendizagem, da mobilidade, da autonomia, do relacionamento interpessoal e da participação social e dando lugar à mobilização de serviços especializados para promover o potencial de funcionamento biopsicossocial”.

Este diploma vem propor meios de diferenciação para alunos com dificuldades específicas, como a criação de escolas de referência para educação bilingue de alunos surdos, alunos cegos e com baixa visão, assim como unidades de ensino estruturado para a educação de alunos com perturbações do espectro do autismo e unidades de apoio especializado para a educação de alunos com multideficiência e surdo cegueira congénita.

Dá-nos ainda indicações de que no processo de avaliação da criança ou jovem com NEE se deve fazer referência à Classificação Internacional de Funcionalidade e Incapacidade (CIF) da Organização Mundial de Saúde, servindo de base ao programa educativo individual do aluno. O objetivo desta classificação é descrever o estatuto funcional da
pessoa, valorizando as suas capacidades, os fatores ambientais, impedimentos e os facilitadores da participação social.

Por fim este diploma pede também a participação dos pais e encarregados de educação, pois estes, por terem acesso a toda a informação constante no processo individual, têm o dever de participar ativamente na educação especial. Além disso, deve ser solicitado a o seu parecer relativamente às medidas educativas especiais.

2.1.3.1. Discalculia

Etimologicamente, discalculia deriva dos conceitos “dis” (desvio) + “calculare” (calcular, contar), ou seja, é “um distúrbio de aprendizagem que interfere negativamente com as competências de matemática de alunos que, noutros aspetos, são normais.” (Rebelo, 1998). Assim, trata-se de “uma desordem neurológica específica que afeta a habilidade de uma pessoa compreender e manipular números.” (Filho, 2007).

O autor (Cruz, 1999), define discalculia como sendo uma disfunção neuropsicológica caracterizada por dificuldades no processo de aprendizagem do cálculo, na maioria das vezes, os discalculicos têm um grau de inteligência normal e apresentam inabilidade na realização das operações matemáticas, bem como falhas no raciocínio lógico matemático.

Já para (Casas, 1988), discalculia é um conceito abstracto de quantidades comparativas.

De acordo com Johnson e Myklebust (1991), este transtorno não é causado por deficiência mental, por défices visuais ou auditivos ou por má escolarização. Segundo os autores, o portador de discalculia comete erros diversos na solução de problemas verbais, nas habilidades de contagem, nas habilidades computacionais e na compreensão dos números.

De acordo com o DSM-IV (2002), o Transtorno da Matemática corresponde a uma capacidade matemática para a realização de operações aritméticas, para o cálculo e para o raciocínio matemático substancialmente inferior à média esperada para a idade cronológica, assim como não acompanha a capacidade intelectual ou o nível de escolaridade da criança.
As dificuldades sentidas ao nível da capacidade matemática podem acarretar prejuízos significativos nas tarefas de vida diária que exigem tal habilidade. Em caso de presença de algum défice sensorial, as dificuldades matemáticas tendem a aumentar.

A discalculia pode afetar diferentes competências, como as habilidades linguísticas (e.g. compreensão e nomeação de termos, operações ou conceitos matemáticos, e transposição de problemas escritos em símbolos matemáticos), percutuais (e.g. reconhecimento de símbolos numéricos ou aritméticos, ou agrupamento de objetos em conjuntos), de atenção (e.g. copiar números ou cifras, observar sinais de operação), e matemáticas (e.g. dar sequência a etapas matemáticas, contar objetos e aprender tabuadas de multiplicação).

Nos distúrbios de memória auditiva, a criança não consegue ouvir os enunciados que lhe são passados oralmente, não conseguindo por isso guardar os factos, o que a torna menos capaz na resolução de problemas matemáticos. A criança com problemas de reorganização auditiva não reconhece o número quando o ouve e tem dificuldade em lembrar-se deste com rapidez.

No que diz respeito às crianças com distúrbios de leitura, estas tendem a apresentar dificuldades na leitura do enunciado do problema, embora possam fazer cálculos quando o problema é lido em voz alta. É relevante sublinhar que os disléxicos podem ser excelentes matemáticos, uma vez que a sua habilidade de visualização em três dimensões, pode ajudá-los a assimilar conceitos, que facilitam a resolução de cálculos mentalmente, sem necessitar de recorrer à respetiva decomposição. Estas crianças podem apresentar dificuldades na leitura do problema, mas não na interpretação correspondente.

Relativamente aos distúrbios de percepção visual: a criança pode trocar o “6” pelo “9”, ou o “3” pelo “8”, pelo que pode sentir maior dificuldade em realizar cálculos, o que também se deve ao facto de não se conseguir lembrar da aparência.

Estes distúrbios podem dificultar a aprendizagem da matemática, mas a discalculia impede a criança de compreender os processos matemáticos. Como referido, a discalculia é um dos transtornos de aprendizagem que causa dificuldades na disciplina de matemática.
2.1.3.2. Tipos de discalculia

O portador de discalculia comete erros diversos na solução de problemas verbais, nas habilidades de contagem, nas habilidades computacionais e na compreensão dos números. Kocs (1974), além de assumir a possibilidade de diferentes combinações e não deixando de referir a hipótese de associação a outros transtornos, classificou a discalculia em seis subtipos. O primeiro subtipo diz respeito à Discalculia Verbal, que corresponde à dificuldade de nomear as quantidades matemáticas, os números, os termos, os símbolos e as relações. A Discalculia Practognóstica, o segundo subtipo, concerne à dificuldade para enumerar, comparar e manipular objetos reais ou imagens. A Discalculia Léxica corresponde ao terceiro subtipo e equivale às dificuldades na leitura de símbolos matemáticos. A Discalculia Gráfica, o quarto subtipo, relaciona-se com as dificuldades sentidas ao nível da escrita de símbolos matemáticos. Por outro lado, a Discalculia Ideognóstica - quinto subtipo - resulta de dificuldades relativas à concretização de operações mentais e à compreensão de conceitos matemáticos. E, por fim, o sexto subtipo, designado de Discalculia Operacional, corresponde a dificuldades na execução de operações e de cálculos numéricos.

De acordo com Johnson e Myklebust (1983) a criança com discalculia é incapaz de visualizar conjuntos de objetos dentro de um conjunto maior, de conservar a quantidade (e.g. não compreendem que 1 quilo é igual a quatro pacotes de 250 gramas), de sequenciar números (o que vem antes do 11 e depois do 15 – antecessor e sucessor), de classificar números, de compreender os sinais (+, -, ÷, ×), de montar operações, de entender os princípios de medida, de lembrar as sequências dos passos para realizar as operações matemáticas, de estabelecer correspondência um a um (e.g. não relaciona o número de alunos de uma sala à quantidade de secretárias) e de contar através dos cardinais e dos ordinais.

2.1.3.3. Causas da Discalculia

Quando se pensa nas causas das dificuldades de aprendizagem em matemática, surgem muitas dúvidas e, na maior parte dos casos, não há uma única causa específica, mas sim um conjunto delas, nomeadamente, estas podem ser encontradas tanto no aluno quanto em relação a fatores externos, inclusive no modo de ensinar matemática.
De acordo com Smith e Strick (2001), no que diz respeito aos aspectos relativos ao aluno, destacam-se a memória, a atenção, a atividade perceptivo-motora, a organização espacial, as habilidades verbais, a falta de consciência e as falhas estratégicas, todas como fatores responsáveis pelas diferenças na execução de atividades matemáticas.

De todas estas, sublinha-se a dificuldade em operações matemáticas simples como a soma ou a multiplicação. Quando o professor tem um aluno com défice de aprendizagem, este necessita dispensar maior atenção para poder identificar as dificuldades apresentadas. No caso da matemática, é um pouco mais difícil dizer se é um défice ou um distúrbio, uma vez que a matemática é considerada uma das disciplinas mais complicadas para o entendimento do aluno.

Um modo simples de verificar possíveis dificuldades com números é pedir ao aluno em causa que conte para trás, de dois em dois números ou de três em três, uma vez que os discalculicos têm dificuldade na compreensão da ordem e da estrutura numérica.

Silva (2008) identifica 5 factores que possivelmente estão na origem da Discalculia:

Imaturidade Neurológica: O bom desenvolvimento neurológico é fundamental para um funcionamento adequado do Sistema Nervoso Central e funções que se estabelecem de forma cronológica. Esta imaturidade pode ser classificada em três graus, (Romagnoli, 2008) leve (cuja reação é favorável à intervenção terapêutica); médio (representa o grau da maioria dos indivíduos com dificuldades em matemática) e; limite (défice intelectual provocado por lesão neurológica).

Fatores Linguísticos: A linguagem é essencial para a compreensão aritmética pois ausência deste pré-requisito resulta na incapacidade de elaborar o pensamento. Silva (2008, p. 20) diz que "[...] a resolução de problemas envolvem muitas questões de linguagem além da matemática". Portanto, sem o domínio linguístico, a descodificação do símbolo oral, sua quantidade e representação gráfica serão deficientes.

Fatores Psicológicos: Dão-se através das alterações psíquicas no controle das funções, como por exemplo, de memória, atenção, percepção etc.
Fatores Genéticos: Ainda se está a estudar o "gen" responsável pela herança destes distúrbios, mas nada foi confirmado até o momento. No entanto, já foram identificados casos significativos de discalcúlicos com antecedentes familiares.

Fatores pedagógicos: Possíveis problemas no ensino de habilidades matemáticas e psicomotoras durante a fase de desenvolvimento e aquisição de tais funções.

De acordo com (Cruz, 2009) os processos cognitivos envolvidos na discalculia passam por dificuldades ao nível da memória de trabalho, da memória em tarefas não-verbal, da soletração de não-palavras (tarefas de escrita) e das habilidades viso-espaciais, psicomotoras e perceptivo-táteis. Não se registam problemas fonológicos.

Os distúrbios só poderão ser diagnosticados por uma equipa multidisciplinar, onde se encontrem envolvidos os vários intervenientes educativos significativos para a criança (e.g. cuidadores, psicólogo, pediatra).

Sartor (2010), refere que a discalculia foi associada com as lesões ao supramarginal e os giros angulares na junção entre os lóbulos temporal e parietal do córtex cerebral. Os transtornos das áreas específicas do SNC que se relacionam ao esquema corporal, de espaço e de tempo são as bases anatomopatológicas das alterações percepto-motoras ou dispractognósicas que levam aos quadros de discalculia, dislexia e disgrafia.

2.1.3.4. Possibilidades de intervenção em crianças diagnosticadas com discalculia

Tendo em atenção as manifestas dificuldades sentidas pelos docentes em ajudar os alunos diagnosticados com discalculia, torna-se pertinente considerar e enunciar algumas orientações nesse sentido.

Convém, ainda, sublinhar que as seguintes propostas devem ser ponderadas de acordo com as caraterísticas de cada caso, desaconselhando-se uma generalização possivelmente abusiva, se porventura descontextualiza ou omite a observação e o possível diagnóstico.

Nos casos mais graves, o tratamento deve ser feito por profissionais especializados, neuropsicológico e neurologista, através de reabilitação neuropsicológica e, segundo Valle (2004), jogos e atividades que estimulem o raciocínio lógico como: quebra-cabeças, dominó, cartas, banco imobiliário, cabra-cega, blocos de construção, boliche, entre outros. É indispensável que o discalculico tenha consciência da importância que a matemática tem na sua
vida quotidiana. É muito importante a repetição da tarefa assim como o reforço positivo valorizando o seu progresso nos jogos matemáticos.

Neste sentido aconselha-se a permissão do uso de calculadora e tabela de tabuada. Deve-se fomentar o uso de caderno quadriculado. Quanto às provas, devem-se elaborar questões claras e diretas, reduzindo-se ao mínimo o número de questões, sem limite de tempo. O aluno deve ser acompanhado por um tutor, que se deve certificar se o enunciado das questões é compreendido. Aconselha-se o estabelecimento de um critério que possibilite, sempre que tal se justificar, a submissão do aluno a prova oral, desenvolvendo as expressões mentalmente, ditando para que alguém as transcreva.

A quantidade dos trabalhos de casa deve ser moderada, cingindo-se a exercícios repetitivos e cumulativos. A visualização do problema, recorrendo a desenhos, deve ser fomentada. Também se deve prestar atenção ao processo utilizado pela criança, verificando o tipo de pensamento que ela usa para abordar o problema.

Ocasionalmente poder-se-á ministrar uma aula livre de erros, para que o aluno possa experimentar o sucesso de uma forma mais consistente, uma vez que para a criança diagnosticada com discalculia nada é óbvio como é para os demais alunos.

Sempre que tal seja possível, o professor deve aproveitar a possibilidade de trabalhar no seio de uma equipa multidisciplinar. A título exemplificativo, a participação de um psicólogo poderá revelar-se facilitadora para o desenvolvimento pretendido, contribuindo para a aquisição de aprendizagens relevantes através do reforço da auto-estima, da valorização de atividades desenvolvidas pela criança e oferecendo um contributo válido para a descoberta do seu processo de aprendizagem, assim como para a operacionalização dos instrumentos que mais facilmente a poderão auxiliar.

Neste contexto, é importante observar que os jogos emergem como uma boa opção para facilitar a visualização da seriação e da classificação e para promover as habilidades psicomotoras e espaciais, além da própria contagem.

O uso do computador também se pode revelar bastante útil, até porque tende despertar grande interesse e curiosidade junto das crianças. Neste sentido, a exploração de sites de jogos lúdico-educativos relacionados direta ou indiretamente com a matemática, pode providenciar o treino necessário da noção de espaço e de forma, contribuindo para o ansiado reforço da compreensão.
da matemática.

É importante evitar atitudes e palavras que dêem destaque às dificuldades do aluno, procurando não diferenciá-lo dos demais, tal como é escusada qualquer demonstração de impaciência com as confusões de raciocínio da criança. É conveniente que o educador evite as correções constantes diante da turma, pois essa linha de conduta acaba por expô-lo a situações desagradáveis.

A suspensão de uma atividade pode surtir efeito no caso de o aluno mostrar nervosismo ou desorganização emocional face a um insucesso recente. Nestes casos, pode ser importante aliviar a pressão sentida pela criança, referindo-se às dificuldades como uma das fases importante da aprendizagem, recorrendo a jogos onde o conteúdo tratado possa estar envolvido, de modo a possibilitar a reorganização emocional imprescindível à aprendizagem desejada.

2.1.3.5. Teste diagnóstico

Foi elaborado um teste inicial que pretendia averiguar a possibilidade de a nossa amostra ter ou não algum aluno com um possível diagnóstico de discalculia, uma vez que não tínhamos conhecimento de nenhuma criança com tal diagnóstico.

O teste (Anexo 2) foi realizado com base num questionário (Anexo 1) simples e breve que pretende identificar se o jovem tem dificuldades que possam relacionar-se com a discalculia. Não substitui um diagnóstico realizado por profissionais, pode apenas ser considerado como um pré-diagnóstico. Perante um diagnóstico desse tipo, se o educando responder de modo incorreto a metade ou mais das perguntas, pode conclui-se que este poderá ter discalculia.

De seguida foi elaborado um pré-teste com conteúdos do tema: “Organização e Tratamento de Dados”, uma vez que era esta a temática que estava a ser abordada no momento em que aferimos a nossa amostra.

O teste era simples e pretendia apenas averiguar quais as principais dificuldades dos alunos em elaborar uma tabela de frequências, interpretar a referida tabela, calcular a média, identificar a moda e por fim, elaborar o respetivo gráfico de barras.

Depois de aplicado o teste e tratados os dados, concluímos que havia muitas lacunas a serem superadas, principalmente na primeira, terceira e última questões.
Uma vez que a amostra é composta por 22 alunos selecionados aleatoriamente e uma vez que estes pertencem a quatro turmas diferentes, sendo duas de 5º ano e as restantes de 6º ano, com professores diferentes, excluímos a possibilidade dos resultados serem fruto de uma estratégia inadequada ao grupo turma.

Deste modo elaborámos uma intervenção cujo objetivo principal passava por ajudar os alunos a ultrapassar as dificuldades detetadas. Para tal recorremos ao programa de geometria dinâmica “Geogebra”, promovendo o contato com conteúdos que são apresentados de um modo inequivocamente lúdico, onde o computador assume um papel central, o que vem ao encontro do que já tínhamos referido, quando tratámos os fatores sugeridos como facilitadores das aprendizagens de alunos com este tipo de dificuldades.

O uso de tabelas e gráficos promove nos alunos o gosto pela matemática. O uso de tecnologias atuais, como a calculadora e o computador permitem ao aluno socorrer-se de mais opções no trabalho estatístico e de aprendizagem, que lhe permitem operar com dados reais e efetuar simulações. O presente estudo não deixou de ir ao encontro destas ideias, utilizando o software “Geogebra”, com o objetivo de ajudar os alunos a “compreender e explorar conceitos, na interpretação e avaliação de argumentos”. (Serrazina, Ponte e Oliveira, 1999, p.83)

As capacidades destas tecnologias permitem aos alunos uma melhor “organização e visualização de dados na execução de cálculos, assim como o retorno quase imediato dos efeitos de decisões tomadas”. (Serrazina, Ponte e Oliveira, 1999, p.83)

Por fim, e após a referida intervenção, elaborámos o pós-teste que pretendia avaliar exatamente os mesmos conteúdos analisados em pré-teste. Para tal, alterámos apenas o tema do problema apresentado, sendo que os conteúdos e questões envolvidos se mantiveram.

As intervenções pedagógicas com jogos e brincadeiras nas aulas de matemática podem ser realizadas, segundo Grando (2004), em sete momentos distintos: familiarização com o material do jogo; reconhecimento das regras; jogo para garantir as regras; intervenção pedagógica verbal; registro do jogo; intervenção escrita; e jogo com competência.
Assim sendo o jogo, na aprendizagem da Matemática, passa a ser fundamental, podendo mesmo ser considerado como material didático, uma vez que de modo lúdico a criança consegue aprender a estrutura lógica da brincadeira e deste modo adquire também a estrutura matemática presente (Moura, 1996).
3- ENQUADRAMENTO MATEMÁTICO

3.1- O currículo da matemática no ensino básico

Aquando da realização deste trabalho, o currículo em vigor para o ensino básico tinha sido publicado em 2001, depois de se terem feito modificações significativas ao anterior, que datava dos anos 90.

Tanto em Portugal como noutros países, o currículo da disciplina de matemática tem vindo a sofrer múltiplas alterações. Prova disso são os manuais escolares, basta consultar alguns exemplares desde o início do século XX. Não foram só os conteúdos que foram sendo modificados, mas também modo como se abordavam esses conteúdos.

A necessidade de elaborar novos currículos deveu-se às mudanças a nível social (as transformações aceleradas da sociedade), forças políticas em vigor, assim como a evolução da metodologia do ensino da matemática. Antes, o currículo era apenas um conjunto de temáticas a tratar pelos professores, agora são dadas recomendações metodológicas sugestões de como avaliar, recursos a utilizar e competências específicas e gerais, tendo o professor muito mais liberdade e autonomia nas suas práticas.

Os programas mais recentes promovem o raciocínio, valorizam a história da matemática, o desenvolvimento da iniciativa e da confiança do aluno, assim como o treino das técnicas de cálculo.

Depois de várias reformas curriculares ao longo dos anos, assim como, relatórios, conferências e projetos, surge um documento designado “Normas para o currículo e avaliação da matemática escolar, NCTM (1989/1991)” que realça que o “principal objetivo da matemática é levar o aluno a desenvolver o seu poder matemático (mathematical power)” (Ponte, Boavida, Graça e Abrantes, 1991.)

Para além dos conteúdos, o programa contempla ainda um conjunto de capacidades transversais que são: a resolução de problemas, o raciocínio matemático e a comunicação matemática.

Segundo Polya (1945), o professor de matemática não deve passar as aulas só a exercitar situações rotineiras, deve também apresentar situações que suscitem o interesse e a curiosidade dos alunos. O gosto pelo raciocínio independente, apresentando problemas compatíveis com os seus conhecimentos, ajudando-os com averiguações estimulantes e proporcionando meios para atingir os seus objetivos são especialmente frisados por este autor: “O problema pode ser modesto, mas se ele desafiar a curiosidade e puser em jogo as faculdades inventivas, quem o resolver por seus próprios meios,
experimentará a tensão e gozará o triunfo da descoberta. Experiências tais, numa idade suscetível, poderão gerar o gosto pelo trabalho mental e deixar, por toda a vida, a sua marca na mente e no carácter.” (Pólya, 1945.)

Para além das mencionadas, no currículo de matemática existem outras capacidades importantes como a comunicação, espírito crítico, capacidade de analisar dados e situações complexas, realizar demonstrações, bem como, as capacidades de natureza metacognitiva como é o caso de planear, gerir e autoavaliar.

Outra disposição para que remetem os atuais currículos é o das novas tecnologias computacionais, que são sugeridas não só para serem usadas na área da investigação matemática, mas para os processos ensino-aprendizagem em geral. Como Bento de Jesus Caraça frisou “cada época cria e usa os seus instrumentos de trabalho conforme o que a técnica lhe permite...”(Caraça, 1942)

Quando os alunos chegam à escola já têm um determinado conjunto de conhecimentos matemáticos que interessa aproveitar, pois esses vão permitir contextualizar a matemática à luz da sua compreensão e vão ajudá-lo a perceber para que serve, dando-lhe uma finalidade e despertando o seu interesse.

O programa assume que o ensino-aprendizagem é sustentado por quatro temas nucleares, sendo eles, o trabalho com os números e operações, o pensamento algébrico, pensamento geométrico e o trabalho com dados. Enquanto no primeiro ciclo se dá o tratamento dos números e operações (ainda não há utilização de incógnitas), geometria e medida e organização e tratamento de dados, no segundo ciclo a álgebra já é iniciada como conteúdo programático dando desenvolvimento ao mesmo no terceiro ciclo. Em relação à geometria, à organização e tratamento de dados e aos números e operações, estes são reforçados ao longo dos três ciclos do ensino básico.

A articulação entre os diversos ciclos do ensino básico foi também especialmente contemplada no programa.

3.2- Finalidade do ensino da Matemática

A matemática sempre foi considerada uma ciência nuclear e fundamental, além disso é também das mais antigas. Este facto sempre se refletiu nos currículos.

A matemática lida com objetos e representações abstratas e com “uma linguagem que nos permite elaborar uma compreensão e representação desse mundo, e um instrumento que proporciona
formas de agir sobre ele para resolver problemas que se nos deparam e de prever e controlar os resultados da ação que realizarmos”. (Programa de Matemática, 2001, p.2)

No ensino básico, esta disciplina pretende promover o desenvolvimento pessoal, dando ao aluno uma formação matemática necessária a outras disciplinas que dela necessitem, permitindo ainda que o aluno continue estudos em outras áreas e na própria matemática. Assim sendo, o ensino da matemática ao longo dos três ciclos do ensino básico têm as seguintes finalidades:

“a) Promover a aquisição de informação, conhecimento e experiência em Matemática e o desenvolvimento da capacidade da sua integração e mobilização em contextos diversificados. Esta finalidade deve ser entendida como incluindo o desenvolvimento nos alunos da:

• Compreensão de conceitos, relações, métodos e procedimentos matemáticos e da capacidade de os utilizar na análise, interpretação e resolução de situações em contexto matemático e não matemático;
• capacidade de analisar informação e de resolver e formular problemas, incluindo os que envolvem processos de modelação matemática;
• capacidade de abstração e generalização e de compreender e elaborar argumentações matemáticas e raciocínios lógicos;
• capacidade de comunicar em Matemática, oralmente e por escrito, descrevendo, explicando e justificando as suas ideias, procedimentos e raciocínios, bem como os resultados e conclusões a que chega.

b) Desenvolver atitudes positivas face à Matemática e a capacidade de apreciar esta ciência. Esta finalidade deve ser entendida como incluindo o desenvolvimento nos alunos de:

• autoconfiança nos seus conhecimentos e capacidades matemáticas, e autonomia e desembaraço na sua utilização;
• à-vontade e segurança em lidar com situações que envolvam Matemática na vida escolar, corrente, ou profissional;
• interesse pela Matemática e em partilhar aspetos da sua experiência nesta ciência;
• compreensão da Matemática como elemento da cultura humana, incluindo aspetos da sua história;
• capacidade de reconhecer e valorizar o papel da Matemática nos vários sectores da vida social e em particular no desenvolvimento tecnológico e científico;
• capacidade de apreciar aspetos estéticos da Matemática.” (Programa de Matemática, 2001, p.3)

3.3- Objetivos gerais do ensino da Matemática

Os objetivos gerais pretendemclarificar o que se espera que os alunos aprendam.

Os objetivos gerais “valorizam as dimensões dessa aprendizagem relacionadas com representação, comunicação e raciocínio em Matemática, a resolução de problemas e as conexões matemáticas, e a compreensão e disposição para usar e apreciar a Matemática em contextos diversos”. (Programa da Matemática, 2001, p.5)
Assim, o ensino da matemática ao longo dos três ciclos do ensino básico deve orientar-se pelos seguintes objetivos gerais:

“a) Conhecimento por parte dos alunos sobre factos e procedimentos básicos da matemática;
b) Desenvolvimento da compreensão matemática;
c) Lidar com ideias matemáticas em representações;
d) Os alunos devem conseguir comunicar as suas ideias e interpretar as ideias dos outros, organizando e clarificando o seu pensamento matemático;
e) Os alunos devem conseguir raciocinar matematicamente usando os conceitos, representações e procedimentos matemáticos;
f) Os alunos devem conseguir estabelecer conexões entre diferentes conceitos e relações matemáticas e também entre estes e situações não matemáticas;
g) Os alunos devem conseguir fazer matemática de modo autónomo;
h) Os alunos devem ser capazes de apreciar a matemática. ” (Programa de Matemática, pp. 4,5,6)

Importa descrever as temáticas e objetivos específicos a abordar no 2º ciclo no que diz respeito ao tema Organização e Tratamento de Dados, tema a abordar neste trabalho.

<table>
<thead>
<tr>
<th>Representação e interpretação de dados</th>
<th>Formular questões suscetíveis de tratamento estatístico, e identificar os dados a recolher e a forma de os obter.</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Formulação de questões</td>
<td>• Distinguir dados de natureza qualitativa de dados de natureza quantitativa, discreta ou contínua.</td>
</tr>
<tr>
<td>• Natureza dos dados</td>
<td>• Recolher, classificar em categorias ou classes, e organizar dados de natureza diversa.</td>
</tr>
<tr>
<td>• Tabelas de frequências absolutas e</td>
<td>• Construir e interpretar tabelas de frequências absolutas e relativas, gráficos de barras, circulares, de linha e diagramas de caule-e-folhas.</td>
</tr>
<tr>
<td>relativas</td>
<td>• Compreender e determinar a média aritmética de um conjunto de dados e indicar a adequação da sua utilização, num dado contexto.</td>
</tr>
<tr>
<td>• Gráficos de barras, circulares, de</td>
<td>• Compreender e determinar os extremos e a amplitude de um conjunto de dados.</td>
</tr>
<tr>
<td>linha e diagramas de caule-e-folhas</td>
<td>• Interpretar os resultados que decorrem da organização e representação de dados, e formular conjeturas a partir desses resultados.</td>
</tr>
<tr>
<td>• Média aritmética</td>
<td>• Utilizar informação estatística para resolver problemas e tomar decisões.</td>
</tr>
<tr>
<td>• Extremos e amplitude</td>
<td></td>
</tr>
</tbody>
</table>

Figura 1 - Programa de Matemática, 2001
3.4- Competências matemáticas

A disciplina de matemática faz parte do currículo de todos os alunos que se encontram a cumprir a escolaridade obrigatória. Todos têm direito a aprendê-la, pois esta é fundamental no quotidiano, faz parte do património cultural da humanidade e trabalha um modo lógico de pensar muito particular e importante.

Um dos instrumentos basilares que constituem as aprendizagens essenciais, apontados pela Declaração Mundial para a Educação segundo a Unesco é a resolução de problemas em comunhão com a leitura, escrita e cálculo. Assinalam também como parte integrante dos conteúdos essenciais para além dos conhecimentos, as atitudes e valores. Ser matematicamente competente, implica conhecimento, atitudes e valores. São estas as competências essenciais do currículo do ensino básico. Para que o aluno adquira estas competências, necessita de lhes atribuir significado, ser estimulado a usar ou expressar o seu pensamento. Se assim não for, a aprendizagem pode ser esquecida ou superficial.

Ora assim sendo, a “função da escola é ajudar os alunos a desenvolver as suas capacidades e de cultivar a sua disposição para usá-las mesmo que (sobretudo quando!) isso envolve algum esforço de pensamento”. (Abrantes, Serrazina e Oliveira, 1999.)

Para que os alunos sejam capazes de desenvolver capacidades de raciocínio e possam resolver de problemas, não podemos limitarmo-nos a treiná-los, para que mecanizem procedimentos e cálculos. É imprescindível valorizar e fomentar as capacidades de pensamento e atitudes positivas face à matemática.

A verdadeira aprendizagem não é só conhecer regras e termos, esta só se torna significativa se estiver integrada num conjunto mais amplo de capacidades e atitudes. Os alunos precisam da ajuda do professor para que possam compreender a verdadeira natureza da matemática e assim apreciá-la.

Segundo o Currículo Nacional do Ensino Básico definido pelo Ministério da Educação, ao longo do seu percurso da educação básica, todos os alunos devem desenvolver as seguintes competências matemáticas:

- A predisposição para raciocinar matematicamente, isto é, para explorar situações problemáticas, procurar regularidades, fazer e testar conjecturas, formular generalizações, pensar de maneira lógica;
- O gosto e a confiança pessoal em realizar actividades intelectuais que envolvem raciocínio matemático e a concepção de que a validade de uma afirmação está relacionada com a consistência da argumentação lógica, e não com alguma autoridade exterior;
3.5. Tema «Organização e Tratamento de Dados»

Este estudo foi efectuado tendo como base o tema Organização e Tratamento de Dados. O presente programa contempla a análise de dados, as medidas de tendência central e de dispersão, as formas de representação de dados, o trabalho de planeamento, concretização e análise de resultados de estudos estatísticos.

A estatística conta já com uma história muito antiga, surgindo desde que o homem sentiu necessidade de registar e analisar determinados acontecimentos. No entanto, enquanto disciplina tem apenas cerca de um século, mas é considerada muito importante no desenvolvimento social e científico.

Os temas estatísticos começam a destacar-se no currículo matemático nos anos 90 depois da reforma escolar. A sua crescente utilização nos vários sectores da actualidade contribuíram em muito para isso.

Antes da reforma, a estatística e as probabilidades eram abordadas apenas no final do ensino secundário, mas agora até no primeiro ciclo já se abordam aspectos como a organização de dados, e aparece explicito no currículo do 2º ciclo.

Nos actuais currículos pretende-se desenvolver competências sócio cognitivas, pois há uma preocupação em formar cidadãos mais críticos e participativos na sociedade.

O objectivo de abordar este tema no ensino básico deve-se ao facto de proporcionar aos alunos experiências que lhes permitam desenvolver intuições relacionadas com esta temática. Deste modo, desenvolve-se o pensamento crítico e uma maior autonomia nas crianças, que assim, têm mais condições para elaborar reflexões, emitir opiniões e/ ou
transmitir decisões. Segundo o autor Carvalho, os alunos dominam um “conhecimento instrumental traduzido no domínio de regras isoladas e de algoritmos aprendidos através da repetição e da rotina em vez de um conhecimento relacional e significativo” (Carvalho, 2006).

O conhecimento estatístico faz parte das competências matemáticas fundamentais, sendo uma ferramenta importante para diversas áreas científicas, profissionais, políticas e sociais. Assim, “Os conceitos de estatística e de probabilidades ajudam a compreender outros tópicos do currículo de Matemática, ligados aos números, às medidas ou às representações gráficas, e envolvendo capacidades matemáticas importantes, nomeadamente de estimação e de resolução de problemas” (Serrazina, Ponte e Oliveira, 1999).

A estatística aprende-se recorrendo a situações concretas, com questões do quotidiano que façam sentido ao aluno, com a possibilidade de trabalhar software estatístico, entre outras. “Sendo este um meio para ajudar os alunos a visualizar e explorar os dados, é certamente um estímulo à interpretação crítica de resultados, à construção de argumentos e à aplicação a novas situações” (Carvalho, 2006).

O facto de o aluno poder dispor de uma variedade de estratégias e recursos facilita o sucesso escolar. O professor deve desencadear momentos de discussão para que os alunos tenham de argumentar e defender o seu ponto de vista mostrando como pensaram, promovendo deste modo uma atitude mais positiva em relação à estatística. O professor pode e deve recorrer ao uso da calculadora e do computador, como motivação, pois permite ao aluno trabalhar com dados reais e fazer simulações.

Este estudo foi pensado tendo como base estas ideias, utilizando o software Geogebra com a finalidade de ajudar os alunos a “compreender e explorar conceitos, na interpretação e avaliação de argumentos”. (Serrazina, Ponte e Oliveira, 1999.)

As capacidades destas tecnologias permitem aos alunos uma melhor “organização e visualização de dados e na execução de cálculos, assim como o retorno quase imediato dos efeitos de decisões tomadas” (Serrazina, Ponte e Oliveira, 1999.)

As situações da vida diária devem ser o ponto de partida para o ensino da estatística. Como tal no nosso estudo foram tratadas as idades e as avaliações finais de período na disciplina de matemática, foram construídas tarefas de aprendizagem envolvendo a utilização do Geogebra.

Outra hipótese interessante consiste em fazer uma parceria com outras disciplinas, por exemplo com as Ciências Naturais. Quando se estudam as plantas pode-se elaborar uma tabela com os dados referentes ao crescimento das plantas e posteriormente elaborar o
gráfico correspondente, permitindo que se interpretem esses dados. Poderá implicar um trabalho colaborativo entre vários professores de várias disciplinas.

Nos dias de hoje é necessário prever e tomar decisões tendo por base informação organizada e tratada segundo normas e conceitos estatísticas. É importante que os “alunos desenvolvam capacidades associadas à recolha, organização e análise de dados, assim como à representação e comunicação de processos e resultados”. (Serrazina, Ponte e Oliveira, 1999.)

Depois de estudos realizados por vários autores, Ponte, Serrazina e Oliveira (1999), estes referem que os alunos têm três níveis graduais de percepção em relação à representação gráfica:

a) Quando os alunos se limitam a responder a questões diretas, sem fazer interpretações, fazendo apenas a leitura direta dos dados;

b) Quando os alunos já conseguem fazer a leitura dos dados que envolvem comparações e ideias estatísticas;

c) Quando os alunos respondem a questões que implicam a dedução e extrapolnação de informação.

Assim é imprescindível que se insista na compreensão e interpretação dos gráficos, para que os alunos os possam ver como um meio de comunicar o pensamento ou para investigar dados. Exercitar o sentido crítico face ao modo como a informação é apresentada é uma capacidade importante e que se pode desenvolver com atividades em que os alunos discutam “o tipo de gráfico mais adequado a uma dada situação e a comparação de gráficos que são construídos sobre os mesmos dados, mas que transmitem ideias diferentes da situação”. (Serrazina, Ponte e Oliveira, 1999.)

Para que os alunos compreendam e adquiram de verdade os conhecimentos sobre as medidas de tendência central (média, moda e mediana), é necessário que o professor relacione esta medida com situações concretas.

Atualmente, a estatística e as probabilidades estão presentes na nossa vida tanto a nível profissional como pessoal e como tal é fundamental o ensino focar-se na compreensão de ideias e no sentido crítico. Assim, “O ensino deve ser fortemente experimental mas apelando às capacidades de raciocínio e comunicação”. (Serrazina, Ponte e Oliveira, 1999.)

Para que a aprendizagem da estatística se torne mais interessante e com um maior envolvimento por parte dos alunos é importante abordar questões do interesse destes. Por exemplo, referindo situações que fazem parte das motivações dos alunos, como o modo de ocupação de tempos livres ou a opinião sobre o funcionamento do bar da escola, notícias sobre desportos ou músicas.
Podem ser propostos e realizados vários projectos estatísticos, que podem ser postos em prática em grupo ou individualmente, dentro ou fora da sala de aula, num contexto interdisciplinar ou não. O fundamental é que os alunos estejam envolvidos em todo o processo de investigação, que vai desde a discussão da escolha do tema até às conclusões.

Uma capacidade importante a desenvolver na estatística é a compreensão de argumentos numéricos. “Esta capacidade implica que os alunos saibam utilizar métodos estatísticos que lhes permitam compreender a informação estatística veiculada pelos meios de comunicação social, fazendo uma leitura crítica.” (Serrazina, Ponte e Oliveira, 1999.)

É importante que os alunos critiquem o significado da média ou da mediana e saibam qual é a mais adequada a determinada situação. Também devem compreender a forma como determinados valores afetam a média ou ser capazes de estimar fazer estimativas à priori.

É importante saber usar a estatística e as probabilidades para comunicar e resolver problemas. Assim, “após a análise e a avaliação dos diferentes argumentos, há necessidade de comunicar a informação de uma forma convincente, sabendo utilizar uma terminologia adequada”. (Serrazina, Ponte e Oliveira, 1999.)

Carvalho (2006), refere que muitas das dificuldades dos alunos neste tema são consequência da má preparação dos professores no que diz respeito a esta disciplina. Na opinião desta autora a estatística é um conteúdo curricular de extrema pertinência pois é um dos mais consequentes na tomada de decisões futuras dos alunos. Como tal não deve ser deixada para segundo plano. A autora sugere ainda que os professores sigam as indicações do currículo para o ensino da estatística, envolvendo os alunos em projectos que vão ao encontro dos seus interesses envolvendo situações práticas.

Importa agora referir quais são as competências matemáticas no domínio da estatística e das probabilidades que todos devem desenvolver. Assim sendo, em todos os ciclos da educação básica os alunos devem ser capazes de desenvolver os seguintes aspetos gerais e comuns:

“a) Predisposição para organizar dados relativos a uma situação ou a um fenómeno e para representá-los de modos adequados, nomeadamente, recorrendo a tabelas e gráficos;

b) Aptidão para ler e interpretar tabelas e gráficos à luz das situações a que dizem respeito e para comunicar os resultados das interpretações feitas;

c) Tendência para dar resposta a problemas com base na análise de dados recolhidos e de experiências planeadas para o efeito;
d) A aptidão para usar processos organizados de contagem na abordagem de problemas combinatorios simples;

e) Sensibilidade para distinguir fenómenos aleatórios e fenómenos deterministas e para interpretar situações concretas de acordo com essa distinção;

f) Desenvolvimento do sentido crítico face ao modo como a informação é apresentado.” (Currículo Nacional do Ensino Básico, competências essenciais, 2001, p.64) Para além dos aspetos supramencionados existem outros específicos para o 2º e 3º Ciclos do ensino básico, no entanto, para este trabalho cingimo-nos ao 2º ciclo. Assim sendo os alunos devem ser capazes de desenvolver:

“a) Compreensão das noções de frequência absoluta e relativa, assim como a aptidão para calcular estas frequências em situações simples;

b) A compreensão das noções de moda e de média aritmética, bem como a aptidão para determiná-las e para interpretar o que significam em situações concretas;

c) A sensibilidade para criticar argumentos baseados em dados de natureza quantitativa.” (Currículo Nacional do Ensino Básico, competências essenciais, 2001, p.65)

As recomendações para se estudar este tema por parte do programa referem o desenvolvimento de pequenos projetos realizados em grupos, para se poder realizar uma maior diversidade de tarefas em menor tempo. É necessário salientar a importância da definição de objetivos comuns, dividir tarefas e tomar iniciativas, assumir responsabilidades, tendo em conta a autonomia e a colaboração de todos.
4- TECNOLOGIAS NO ENSINO

4.1- A introdução das TIC no ensino especial

Atualmente, a escola precisa de se renovar para poder acompanhar as mudanças que vão surgindo, adaptando-se deste modo às necessidades e expectativas duma sociedade cada vez mais globalizada e tecnológica. Devido às novas tecnologias implementadas nos vários sectores da nossa sociedade, também as atividades humanas sofreram alterações relativas ao modo de trabalhar e de viver. O impacto das novas tecnologias fez-se sentir desde a simples organização da contabilidade de uma casa comercial até à informatização dos mercados bolsistas. Como tal, é inevitável que também na educação assumam um papel importante. (Pinto, 2002)

Para Almenara, J; Pérez, M; Batanero, J., o facto de as pessoas com NEE beneficiarem de recursos tecnológicos é essencial para que haja um processo de equidade. Pois, estas tecnologias compensam, nalguns casos, a deficiência e/ou incapacidade da criança ou jovem, possibilitando a comunicação, por exemplo, fazendo com que se tornem mais autónomos e independentes.

As medidas relacionadas com esta temática podem ser encontradas no documento anexo à Resolução do Conselho de Ministros nº 96/99, DR nº 199, I Série B, de 26 de agosto de 1999, estas referem-se à forma de adequar o Sistema Educativo ao uso das novas tecnologias no ensino de jovens com NEE na sociedade de informação. As medidas propostas foram:

“a) Promover a utilização de computadores pelas crianças e jovens com necessidades especiais integrados no ensino regular, criar áreas curriculares específicas para crianças e jovens portadores de
deficiências de fraca incidência e aplicar o tele-ensino dirigido a crianças e jovens impossibilitados de frequentar o ensino regular.

b) Adaptar o ensino das novas tecnologias às crianças com necessidades especiais, aperfeiçoando as escolas com os equipamentos necessários e promovendo a adaptação dos programas escolares às novas funcionalidades disponibilizadas por estes equipamentos.

c) Promover a criação de um programa de formação sobre a utilização das tecnologias da informação no apoio aos cidadãos com necessidades especiais, especialmente destinados a médicos, terapeutas, professores e outros agentes envolvidos na adequação da tecnologia às necessidades dos cidadãos”.

Posteriormente, o Governo lançou o programa “e. escolas” cujo finalidade era financiar ações que facilitassem o acesso à sociedade de informação. Através da Resolução do Conselho de Ministros nº 51/2008 de 19 de março, publicado em Diário da República alargou o programa a todas as crianças e jovens com NEE.

Também na Resolução do Conselho de Ministros nº 137/2007, de 8 de setembro de 2007 foi referido que “A Estratégia de Lisboa e o Programa Educação e Formação 2010 definiram para a Europa, um conjunto de linhas de orientação com vista à plena integração dos cidadãos europeus na sociedade do conhecimento. O desenvolvimento de competências em tecnologias da informação e da comunicação (TIC) e a sua integração transversal nos processos de ensino e de aprendizagem tornam-se objetivos incontornáveis dos sistemas de ensino”.

Com o Plano Tecnológico da Educação e com a sua regulamentação através da publicação da Portaria nº 731/2009 de 7 de Julho, estipulou-se a execução do programa de formação e de certificação de competências em TIC a todos os docentes a exercer funções nos estabelecimentos de educação.

Com todas estas medidas implementadas tem sido criado um ambiente mais inclusivo que promove a participação social de crianças e jovens com NEE.

As TIC são uma vantagem para os alunos com NEE, embora estas dependam do seu tipo de limitações, segundo Almenara, J; Pérez, M; Batanero, J. (2007.), as TIC “aumentam a auto-estima do aluno não sentindo este tanto a diferença com os seus pares; favorece a autonomia; ajudam a superar as limitações decorrentes de deficiências motoras, cognitivas e sensoriais potenciando as suas habilidades/competências; proporcionam oportunidades para participar e realizar tarefas de ensino-aprendizagem; proporcionam momentos de prazer; possibilitam muitas vezes o experienciar de situações de êxito académico e pessoal.”

4.2- As TIC e o ensino aprendizagem

Há uns anos atrás os recursos utilizados na sala de aula limitavam-se a quadro e giz. Com sorte, e numa escola bem equipada, televisão com vídeo e retroprojetor.
Em teoria até se podia pensar no computador como recurso de aprendizagem, mas as escolas não estavam equipadas com o material necessário. Com o passar dos anos e o evoluir das novas tecnologias, bem como a generalização da sua utilização, obrigou a que essa evolução se estendesse à escola também. O computador pode ser utilizado de várias formas e para diversos fins, é um instrumento de comunicação que promove uma participação mais activa no trabalho escolar. Pode ser utilizado na sala de aula com diferentes propósitos, dependendo do objetivo escolhido pelo professor, quer seja para desenvolver a socialização ou o individualismo, a cooperação ou a competição, ou até para desenvolver as estruturas de pensamento ou para transmitir conhecimentos.

As novas tecnologias são um aliado do ensino, podendo mesmo ser consideradas como um medidor pedagógico ao serviço do professor e dos alunos. Estas permitem ao docente ensinar disciplinas, preparar materiais, fazer pesquisas que irão enobrecer a sua aula, podem ainda auxiliar os discentes a estruturar o seu trabalho individual. Vários especialistas, como Gravina (1998) e Medeiros (2002) afirmam que a utilização das novas tecnologias sua utilização deve estar acompanhada de um planeamento estratégico, isto é, vinculada de uma ação pedagógica para atingir os seus fins, sendo que uma das estratégias de ação para atingir esse objetivo é proporcionar ao aluno situações de reflexão, isto é, formulação de hipóteses, organização do pensamento e autonomia.

Com o auxílio de softwares educativos os conceitos antes estudados abstratamente passam agora a ser mais concretos, no entanto nem todos os softwares cumprem os objetivos a que se propõem. Tal como refere Medeiros (2002) a educação não é só receber informação, mas sobretudo compreendê-la e refletir criticamente sobre ela. “A educação vista de uma forma holística, lida com a compreensão, com o conhecimento e com a sabedoria. É preciso estimular as mentes dos estudantes e não apenas abarrotá-las de informações enlatadas.” (Medeiros, 2002.)

Este autor, também menciona que para se dar a aprendizagem, é necessário que os alunos aprendam fazendo, pois a simples transmissão de conteúdos não conduz a processos de construção. Mesmo utilizando a informática, isso não nos garante uma boa aprendizagem, ou um ensino diferente do tradicional, pois os computadores devem servir para ensinar competências básicas que envolvam a prática e facilitem o desenvolvimento cognitivo. Logo, a aprendizagem para ser duradoura tem de ser construída e reconstruída. Baseando-nos em Moreira (2003), a aprendizagem passa a ser
significativa quando já se consegue transmitir por palavras nossas os novos conhecimentos, pois só assim eles significam algo. A “aprendizagem significativa caracteriza-se basicamente pela interação entre novos conhecimentos e aqueles especificamente relevantes já existentes na estrutura cognitiva do aprendiz”. (Moreira, 2003.)

De acordo com Lajus e Magnier (1998), através da utilização de programas específicos ou através das ferramentas genéricas, como é o caso de folhas de cálculo, processamento de texto, correio eletrónico, entre outros, podem ser ensinar os diferentes conteúdos. Outro exemplo de um instrumento de aprendizagem geométrica é o Cabri-Géomètre, que apresenta um editor de figuras com comandos simples e intuitivos, permitindo traçar triângulos, mediatrizes, bissetrizes ou medianas, por exemplo, “Simultaneamente editor e simulador, Cabri-Géomètre é igualmente uma ferramenta para a produção de conjeturas matemáticas. Com este programa, o ensino e a aprendizagem da geometria podem ser abordados de uma forma radicalmente nova”. (Lajus e Magnier, 1998.)

Neste trabalho irá ser utilizado um software actual da família do Cabri-Géomètre. Como nota, observamos que nos dias de hoje foi lançada a magnífica ferramenta Cabri3D capaz de lidar com a geometria espacial que é uma sequela do Cabri-Géomètre.

A matemática pode beneficiar de vários programas informáticos que não são apenas de cálculo numérico, mas também de cálculo formal. Pois eles não colocam em causa a matemática nem os seus fundamentos matemáticos, mas apresentam muitas vantagens a nível pedagógico. A primeira ferramenta a ser divulgada no ensino da matemática foi a calculadora, embora inicialmente tenha tido reações menos boas por parte da classe docente, que temeu que os alunos deixassem de saber calcular e memorizar a tabuada. Após alguma reflexão, percebeu-se que o objetivo da utilização da calculadora seria não penalizar os alunos que não sabem calcular, ou quando o fim a que se propõe o exercício não é avaliar o cálculo, mas sim interpretar um enunciado e verificar qual o raciocínio necessário para o resolver, além disso reduz bastante também o tempo de realização do exercício. É preciso ainda referir que o uso abusivo desta tecnologia também é prejudicial, podendo até criar alguma dependência, inviabilizando deste modo a produtividade desta ferramenta informática. É importante para o bom desenvolvimento da criança que se faça um equilíbrio entre as várias atividades desde desenho, jogos, até ao uso do computador.
Apesar de todas as vantagens dos computadores, estes não pode ser vistos como o único recurso didático, mas sim como mais um, deve ser utilizado pelo professor sempre de um modo crítico e cuidado, não perdendo de vista os objetivos da educação.

4.3- O software – Geogebra

De seguida vamos descrever o programa Geogebra, uma vez que este serviu de base para este trabalho.

Nos dias de hoje, grande parte das escolas dispõe cada vez mais de equipamento informático, e de variado software o que interessa e entusiasma a maioria dos alunos. O computador permite fazer simulações de situações quotidianas na sala de aula. O uso de alguns programas facilita a visão dos alunos, uma vez que torna mais visíveis certos fatos dos conteúdos trabalhados.

É importante salientar que as orientações metodológicas que orientam o programa da matemática reforçam o uso da tecnologia, assumindo esta um papel de relevo, principalmente nalguns temas.

Uma ferramenta dos nossos dias, muito utilizada em Portugal para ensinar e aprender matemática, é o Geogebra, um software de matemática dinâmica, que permite construir e explorar objetos geométricos e algébricos, interactivamente.

Este software permite que os estudantes possam aprender à medida que exploram múltiplas animações através da construção de simuladores. Estas podem ser dinamizadas na sala de aula, em grupo ou individualmente, ou até mesmo em casa.

O Geogebra (Geometria e Álgebra) é um programa de matemática dinâmica, escrito em Java (permitindo a sua disponibilidade em várias plataformas) e de distribuição livre. Entende-se por programa de matemática dinâmica um programa em que objetos dependentes atuam e mudam de acordo com os objetos independentes. Por exemplo, se deslocarmos dois pontos que definem uma reta, a reta é também deslocada. Este pormenor faz com que este tipo de software seja riquíssimo e muito apropriado no contexto do ensino da matemática. Em 2001, na Universitat Saltzburg, Markus Hohenwarter inicia o processo e criação do Geogebra, para que este seja utilizado nas salas de aula, com o objetivo de ser um facilitador das aprendizagens matemáticas. Já se encontra disponível em várias línguas e devido às suas grandes contribuições para uma melhor aprendizagem na sala de aula conta com diversos prémios educacionais de
software na Europa e nos EUA (como por exemplo: Comenius 2004 e prémio de tecnologia 2009, entre muitos outros). O programa de matemática não deixa dúvidas quanto às orientações para que se utilize este tipo de software. Eis um exemplo:

Figura 2 – Programa de matemática (pag. 52).

Por facilitar a compreensão de inúmeros conceitos e funcionar muito bem com os quadros interativos, frequentes nas salas de aula, o Geogebra é-nos sugerido como mais uma ferramenta pedagógica de grande utilidade. Este tipo de software pode ser utilizado basicamente de três formas distintas:

1) O professor orienta e os alunos fazem as construções. Deste modo a sala deve ter disponíveis vários computadores, poderá mesmo assim optar-se pelo trabalho de grupo.

2) O professor efectua a construção previamente, e os alunos limitam-se a explorar e manipular a situação. Também nesta situação é necessário que a sala tenha vários computadores disponíveis.

3) O professor utiliza uma situação já feita, com auxílio de projetor ou de quadro interativo para expor conceitos numa aula, podendo eventualmente chamar alunos ao quadro. Neste caso apenas serão necessários um computador e um projetor.

Já há várias situações construídas para diversos temas matemáticos, pois é um software livre. O Geogebra é um facilitador nas aulas, pois permite-nos trabalhar geometria, álgebra e estatística, devido a um vasto leque de opções, o que faz com que as aulas sejam menos monótonas e mais interessantes e agradáveis.

Como o este estudo de campo utiliza o Geogebra, pode-se observar como é a aplicação desta ferramenta.
PARTE II

1-OBJETIVOS DO ESTUDO

Os objetivos centrais desta investigação podem ser descritos através de três questões fundamentais:

1. Será que a utilização dos computadores é um facilitador de aprendizagens matemáticas em alunos de 2º ciclo?

2. O programa de geometria dinâmica *Geogebra* pode ser aplicado com sucesso às crianças com NEE, nomeadamente em alunos com possível discalculia?

3. Particularizando mais, o programa *Geogebra* pode ser útil para a aquisição das competências estatísticas relativas ao 5º e 6º ano em crianças com NEE, nomeadamente em alunos com possível discalculia?

Atendendo a estes objetivos, esta investigação irá desenvolver-se sob a forma de um estudo de caso exploratório e descritivo na medida em que busca descrever os factos e fenómenos de uma realidade particular.

Hoje em dia dispomos de várias tecnologias de informação e comunicação (TIC). Existe um variadíssimo software estatístico, geométrico, de cálculo, espacial, etc., sendo algumas destas opções gratuitas tal como são sugeridas nos currículos actuais.

Na Educação Especial as TIC têm um papel importante, pois facilitam a comunicação de crianças NEE com os outros, aumentando a sua auto-estima e autonomia.

Os computadores permitem-nos adaptar os textos, as imagens, os sons às necessidades da criança.

Através do fascínio e entusiasmo que as crianças demonstram a quando da utilização destes recursos, podemos direcionar essa motivação para a aprendizagem.

De acordo com a legislação em vigor, as crianças NEE devem, sempre que possível, estar integradas nas turmas regulares. O que é um constante desafio para o professor dadas as características e dificuldades destes alunos e dado ao elevado número de alunos por turma.
Mesmo assim, Nielson (1999), defende que a inclusão dos alunos NEE nas turmas regulares proporciona-lhes uma oportunidade de interagir com outras crianças facilitando a sua vida em sociedade.

Também os alunos sem NEE beneficiam deste ambiente de integração, pois passam a compreender melhor a complexidade e diversidade das características humanas.

Deste modo as TIC permitem ao professor criar actividades exploratórias que facilitem a integração de todos.

Atendendo à importância do ensino da matemática, à importância crucial da integração em turmas regulares dos alunos com NEE e ao facto de o recurso às TIC ser mais uma solução para lidar com estes temas, a relevância das questões levantadas pelo presente trabalho surge de forma natural.
2-CARACTERIZAÇÃO DA AMOSTRA

A amostra do estudo é constituída por 22 alunos a frequentar o 2º Ciclo do Ensino Básico numa escola do Distrito de Lisboa. Entregaram-se pedidos de autorização a todos os Encarregados de Educação do 2º Ciclo, sendo que apenas os pais destes 22 alunos permitiram a participação no presente estudo.

Os alunos são oriundos de quatro turmas, duas do 5º e duas do 6º ano de escolaridade. As quatro turmas, em causa, têm uma média de 22 alunos. A média etária das duas turmas do 5º ano é de 10 anos de idade, enquanto no 6º ano de escolaridade se registou uma média de 11 anos de idade. Dois dos alunos que não participam na amostra descrita, um do 5º e outro do 6º ano, tinham reprovado no 2º Ciclo, tendo-o feito ambos no 5º ano.

Dos elementos pertencentes à nossa amostra, 11 frequentam o 5º ano. Destes 11, 8 são rapazes. Dos restantes 11, matriculados no 6º ano, 7 pertencem ao sexo feminino.

Das 22 crianças que constituem a nossa amostra, 3 rapazes têm um Programa Educativo Individual (P.E.I.). Dois frequentam o 5º ano e têm 12 anos, um deles ficou retido por 2 vezes no 1º Ciclo do Ensino Básico, nomeadamente, no 2º e no 4º ano de escolaridade, enquanto o outro pediu adiamento de entrada no Ensino Obrigatório e reprovou uma vez no 2º ano de escolaridade. O aluno com P.E.I. matriculado no 6º ano, também com 12 anos de idade, reprovou uma única vez, o que se verificou no 2º ano de escolaridade. Tendo em consideração o percurso académico dos restantes elementos das 4 turmas, não se verificou mais nenhuma retenção durante a frequência do 1º Ciclo.

Uma vez que na nossa amostra nenhum dos alunos era diagnosticado com discalculia, elaboramos um teste pré-diagnóstico. Este foi construído com base nos sintomas dos discalculícios anteriormente discritos e na consulta do único “teste” disponível sobre o tema na internete. No entanto, este teste é meramente informativo, pois um diagnóstico, como referido, tem de ser realizado por profissionais. O teste pretende ser objetivo, simples e direto, sendo constituído por itens que procuram aferir alguns dos sintomas previamente enunciados.

O teste é constituído por 18 questões, que contemplam as seguintes tarefas: copiar números, escrever um número de telefone, efetuar operações de adição e de subtração...
com e sem transporte, definir o que é uma fração, distinguir números pares e ímpares, resolução de problemas com dinheiro, ver horas, completar e explicar a tabuada do 2, resolução de uma multiplicação com o auxílio da calculadora, resolução de problemas envolvendo unidades de peso, identificar figuras geométricas, comparar números, perceber o que representa uma percentagem e resolução de um problema sobre proporcionalidade.

De acordo com os resultados deste pré-diagnóstico, destacam-se três alunos com possível discalculia. São eles o A, I e o P, pois obtiveram mais de 50% de respostas incorretas no referido teste.
3-ESTUDO DE CASO

Posteriormente, foi elaborado um pré-teste sobre os conteúdos do Tema: “Organização e Tratamento de Dados”. Opção, que se ficou a dever ao facto de ser esta a matéria tratada em contexto de sala de aula no momento em que o pré-teste seria aplicado. Esta decisão foi tomada em sintonia com a opinião dos professores das turmas envolvidas no estudo.

<table>
<thead>
<tr>
<th>Tópicos</th>
<th>Objetivos específicos</th>
<th>Notas</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Formulação de questões.</td>
<td>• Formular questões suscetíveis de tratamento estatístico, e identificar os dados a recolher e a forma de os obter.</td>
<td>• Propor e solicitar exemplos de situações da vida real.</td>
</tr>
<tr>
<td>• Natureza dos dados.</td>
<td>• Distinguir dados de natureza qualitativa de dados de natureza quantitativa, discreta ou contínua.</td>
<td>• Propor pequenos projetos, identificando os dados a recolher, os processos de recolha e os procedimentos para a sua organização.</td>
</tr>
<tr>
<td>• Tabelas de frequências absolutas e relativas.</td>
<td>• Recolher, classificar em categorias ou classes, e organizar dados de natureza diversa.</td>
<td>• Recolher dados recorrendo a observações ou experimentações e a fontes secundárias como a Internet.</td>
</tr>
<tr>
<td>• Gráficos de barras, circulares, de linha e diagramas de caule-e-folhas.</td>
<td>• Construir e interpretar tabelas de frequências absolutas e relativas, gráficos de barras, circulares, de linha e diagramas de caule-e-folhas.</td>
<td>• Explorar situações que evidenciem fontes de envesamento, na recolha de dados. Por exemplo, para saber se os alunos de uma escola gostam de futebol, utilizar como amostra uma turma que pratica futebol.</td>
</tr>
<tr>
<td>• Média aritmética.</td>
<td>• Compreender e determinar a média aritmética de um conjunto de dados e indicar a adequação da sua utilização, num dado contexto.</td>
<td>• Para o estudo de dados discretos ou contínuos construir diagramas de caule-e-folhas e utilizá-los para obter os extremos de um conjunto de dados.</td>
</tr>
<tr>
<td>• Extremos e amplitude.</td>
<td>• Compreender e determinar os extremos e a amplitude de um conjunto de dados.</td>
<td>• Utilizar gráficos de linha para registo de observações que evoluem com o tempo (por exemplo a temperatura numa sala ao longo do dia).</td>
</tr>
<tr>
<td></td>
<td>• Interpretar os resultados que decorrem da organização e representação de dados, e formular conjeturas a partir desses resultados.</td>
<td>• Salientar que a média só pode ser calculada para dados quantitativos.</td>
</tr>
<tr>
<td></td>
<td>• Utilizar informação estatística para resolver problemas e tomar decisões.</td>
<td></td>
</tr>
</tbody>
</table>

Figura 3: Programa de matemática do 2º ciclo: Organização e Tratamento de Dados
O pré-teste foi construído com base nos objetivos delineados no programa referente ao 2º Ciclo do Ensino Básico, e tendo sempre em consideração que a amostra era composta por alunos do 5º e do 6º ano, pelo que teria de ser exequível para todos os elementos do grupo.

Foi pedido a todos os alunos que organizassem numa tabela os dados referentes às idades dos sobrinhos da D. Ana. Depois perguntou-se quantos sobrinhos eram e solicitou-se o cálculo da média e da moda de idades. A elaboração do respetivo gráfico de barras correspondeu ao último exercício do pré-teste.

A intervenção centrou-se nas recomendações referidas e consideradas facilitadoras de aprendizagens por parte dos discalcúlicos, nomeadamente a utilização de computadores, de programas matemáticos, de jogos, enunciados claros e objetivos, reforço positivo e experimentação ativa dos alunos.

A intervenção era composta por uma situação criada e aplicada no programa matemático Geogebra, onde foram criados os sobrinhos da D. Ana e ao lado de cada um deles havia um botão que ao ser acionado alterava as idades e consequentemente o aspeto do menino. Assim, os alunos podiam variar as idades e, consequentemente, a maioria dos restantes resultados, nomeadamente a tabela, a média, a moda e o gráfico de barras. O investigador tanto podia mostrar tudo no ecrã como podia esconder as várias questões, mostrando só aquilo que pretendia. Este programa permitia-nos observar diretamente o que acontecia quando se alterava uma idade, refletir sobre o que era necessário mudar para que a moda/média fosse outra, e tudo de um modo lúdico e sem receio por parte dos alunos mais inseguros.
O pós-teste foi aplicado a todos os elementos que compunham a amostra, ao contrário da intervenção, em que apenas 11 alunos beneficiaram do programa Geogebra. O pós-teste é idêntico ao pré-teste, ou seja, as questões são análogas, mas em vez de se falar dos sobrinhos da D. Ana, fala-se das notas de Inglês obtidas na turma da Susana.

O objetivo era investigar se a intervenção traçada permitia uma evolução maior do que a sua ausência (registada através dos alunos que não estiveram presentes na intervenção realizada), comparando os resultados auferidos pelos alunos no pré e no pós-teste.

Figura 4: Situação com recurso ao geogebra.
4-METODOLOGIA APLICADA

No âmbito do programa curricular de matemática de 6.º ano, a temática abordada para este estudo de caso foi a: “organização e tratamento de dados”.

O estudo foi realizado numa escola em Lisboa, com uma amostra composta por 22 alunos, escolhidos aleatoriamente pertencentes a quatro turmas diferentes, sendo duas de 5º ano e as duas restantes de 6º ano. O facto dos professores serem diferentes levou-nos a excluir a possibilidade dos resultados se ficarem a dever a uma estratégia inadequada.

Não houve qualquer contato prévio entre o investigador e os elementos constituintes da amostra. Apesar de no grupo se encontrarem três alunos com Plano Educativo Individual (PEI), nenhum deles estava diagnosticado com discalculia. Assim, foi elaborado um teste que servia de despiste/sinalização ou como pré-diagnóstico, uma vez que o diagnóstico apenas está ao alcance dos profissionais qualificados.

Começámos por aplicar o “teste” de discalculia e observar os resultados. O critério seguido estabelecia que uma criança seria considerada como “discalcúlica”, caso respondesse incorretamente a metade ou mais de metade das questões colocadas.

Através dos professores foi possível saber qual o tema que seria abordado no momento em que fossem aplicados os testes e realizada a intervenção.

O planeamento do trabalho de campo decorreu do seguinte modo: foi efetuada uma reunião com a Delegada de Grupo da escola que nos informou que em breve se daria início à unidade temática de Organização e Tratamento de dados. Com base nesta reunião foram efetuados os testes (Anexo 3), baseados no Programa de Matemática em vigor. Após a aplicação do pré-teste foram analisados os resultados, verificando-se que o maior número de lacunas se havia registado na primeira, terceira e última questões.

Para tentar melhorar estes resultados recorreu-se ao programa Geogebra, como auxiliar pedagógico. A intervenção (Anexo 4), ministrada numa única aula, foi realizada através de uma situação previamente construída, para iniciação e interpretação dos dados expostos, explorando as idades dos sobrinhos da D. Ana. A situação, construída no programa Geogebra, permite ao utilizador (professores e alunos) manipularem dados.
relativos à variável quantitativa, neste caso a *idade*, no que diz respeito aos mais variados tipos de indicadores e gráfico.

Após a realização da intervenção foi ministrado o pós-teste (Anexo 5), procurando aferir os possíveis progressos face aos resultados alcançados no pré-teste.

Ambos os testes tiveram um grau de dificuldade semelhante, permitindo assim fazer comparações, que consentissem a deteção de eventuais evoluções no desempenho dos alunos, entre os dois momentos de avaliação. Desenvolvimento possivelmente justificado através do recurso efetuado ao software *Geogebra*. Na secção que se segue apresentamos os resultados obtidos, o seu tratamento estatístico e consequentes conclusões.
5-DESCRIÇÃO DOS DADOS OBTIDOS

Como referido anteriormente, toda a situação em estudo foi planeada de forma a aferir a eficácia de uma situação pedagógica com recurso ao programa Geogebra. No entanto, há algumas condicionantes, pois não me foi possível isolar a situação de elementos externos como outras aprendizagens, correções, outras práticas, etc., durante as aulas de matemática. Neste capítulo, apresentar-se-á a análise estatística relativa à informação recolhida.

DESCRIÇÃO DOS RESULTADOS

Começamos por apresentar Figura 5, onde se encontram resumidos os resultados referentes ao pré-teste. O zero (0) representa a resposta incorreta ou a ausência de resposta; o um (1) corresponde à resposta incompleta e o dois (2) representa a resposta correta. As letras a vermelho representam os alunos com pré-diagnóstico de discalculia.

<table>
<thead>
<tr>
<th>Pergunta</th>
<th>1.1</th>
<th>1.2</th>
<th>1.3</th>
<th>1.4</th>
<th>1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>R</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>S</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>V</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>P</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>L</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Q</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>X</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>J</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>U</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>N</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>O</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>T</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>I</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Figura 5: Resultados individuais obtidos no pré-teste.
Se considerarmos que cada uma das 5 questões vale 20 pontos, ficamos com um total de 100%, deste modo podemos verificar que há 50% de positivas e de negativas.

De seguida apresentamos um gráfico representativo dos resultados obtidos no pré-teste.

Figura 6: Distribuição dos resultados do pré-teste.

Apresentamos de seguida a figura 7, onde se encontram resumidos os resultados referentes ao pós-teste.

<table>
<thead>
<tr>
<th>Pergunta</th>
<th>1.1</th>
<th>1.2</th>
<th>1.3</th>
<th>1.4</th>
<th>1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>R</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>S</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>V</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>P</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>H</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>L</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Q</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>X</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>J</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>U</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>
Com intenção de apresentar comparativamente ambos os testes, segue-se um diagrama de extremos e quartis conjunto, indicando em simultâneo a posição dos três alunos com NEE em estudo.
Figura 9: Resultados dos dois testes: apresentação conjunta.
6-ANÁLISE ESTATÍSTICA DOS RESULTADOS

Em relação aos dados recolhidos descritos na secção anterior procurou-se testar se houve ou não evidência estatística de melhoria global de classificações do primeiro teste para o segundo e se houve ou não evidência de diferença de desempenho dos alunos com NEE em relação aos restantes alunos sem NEE.

6.1.- Comparaçao global

Para testar se houve ou não evidência de melhoria global de desempenho, utilizando uma situação pedagógica deste género, foi utilizada a informação total relativa aos alunos com e sem NEE. Trata-se de uma amostra emparelhada com dimensão inferior a 30 elementos. O parâmetro escolhido foi a média das classificações dos primeiro e segundo testes. É conhecido da teoria especializada (Velosa, Pestana, 2008) que, nestes casos, pode realizar-se um teste de hipóteses para a diferença de médias utilizando como estatística de teste uma distribuição \(t \)-Student com 21 graus de liberdade (dada a dimensão da amostra ser 22 alunos).

Utilizando as designações usuais \(\bar{x}_1 \) e \(\bar{x}_2 \), procurou-se saber se há evidência para

Sendo assim, assumindo como verdadeira a hipótese nula a formulação natural do teste foi

Registou-se a diferença de médias amostral 64,09091-45,90909=18,18182 e o desvio padrão corrigido 23,01891. A dimensão da amostra foi 22 (22 alunos). A estatística de teste segue uma \(t \)-Student. No caso concreto, a estatística de teste correspondeu ao valor 3,704793, conduzindo a um \(p-value \) de 0,0007.
Figura 10: Comparação global de desempenho

Desta forma, pode afirmar-se, com uma confiança praticamente de 100%, que o desempenho dos alunos, verificada uma situação pedagógica deste género, melhora de um momento avaliativo para o outro.

6.2- Alunos com NEE

Dada a dimensão da amostra ser pequena (apenas três alunos com NEE), a evolução dos alunos em causa não pode ser testada com grande significância estatística. O aluno I obteve 0 pontos no primeiro teste e 20 no segundo. O aluno P obteve 20 pontos no primeiro e 30 no segundo. Finalmente, o aluno A obteve 40 pontos no primeiro e 70 no segundo. Sobretudo em relação ao aluno A, tudo leva a crer numa evolução de um teste para o outro. Nesta secção optou-se por fazer um teste estatístico mais representativo que consiste em comparar os desempenhos de cada um dos alunos com NEE com os alunos sem NEE.

Em relação ao primeiro teste, dadas as classificações dos alunos I, P e A serem de 0, 20 e 40 pontos respectivamente, organizaram-se os seguintes testes:

Neste caso, e não incluem os alunos com NEE.
É conhecido da teoria especializada (Velosa, Pestana, 2008) que, nestes casos, podem realizar-se testes de hipóteses utilizando como estatísticas de teste a distribuição t-Student com 18 graus de liberdade (dada a dimensão da amostra de alunos sem NEE ser de 19 alunos).

Em relação ao primeiro teste, registou-se a média amostral 50 (dos alunos sem NEE) e o desvio padrão corrigido 15,63472 (dos alunos sem NEE). A dimensão da amostra foi 19 (19 alunos sem NEE). A estatística de teste segue uma (utilizada em ambos os testes). Nos casos concretos, as estatísticas de teste corresponderam aos valores de no caso do aluno I, no caso do aluno P e 2,787961 no caso do aluno A conduzindo a p-values praticamente nulos nos dois primeiros casos e

Desta forma, pode afirmar-se, com uma confiança quase de 100%, que os alunos I e P apresentam desempenho inferior ao dos alunos sem NEE. Em relação ao aluno A, pode afirmar-se o mesmo com uma confiança de cerca de 99%.

Em relação ao segundo teste, dadas as classificações dos alunos I, P e A serem de 20, 30 e 70 pontos respectivamente, organizaram-se os seguintes testes:

Registou-se a média amostral 67,89474 (dos alunos sem NEE) e o desvio padrão corrigido 22,00478 (dos alunos sem NEE). A dimensão da amostra foi 19 (19 alunos sem NEE). A estatística de teste é novamente que segue uma . Nos casos concretos, as estatísticas de teste corresponderam aos valores de no caso do aluno I, 7,506519 no caso do aluno P e no caso do aluno A (está inclusivamente acima da média!), conduzindo a p-values praticamente nulos nos dois primeiros casos e
Desta forma, pode afirmar-se novamente, com uma confiança quase de 100%, que os alunos I e P apresentam desempenho inferior ao dos alunos sem NEE.

Em relação ao aluno A não se regista evidência relevante para se afirmar um pior desempenho no segundo teste.
7-CONCLUSÕES

Finalizado este trabalho, sabemos que ele é apenas um gota no oceano, mas mesmo assim, esperamos ter contribuído mais um pouco para a área do ensino a crianças com NEE, que tanto nos cativam.

Tal como inicialmente referido, o tema de investigação centrou-se no estudo do uso das tecnologias de informação e comunicação (TIC), designadamente o programa Geogebra, aplicado a crianças e jovens com NEE.

A escolha desta temática deve-se à importância do ensino da matemática e ao interesse do uso das TIC no processo educativo dos alunos com NEE.

Atualmente há muitos alunos com NEE nas nossas escolas. Sempre houve alunos com dificuldades de aprendizagem, mas nem sempre tiveram direito à educação. Como tal as escolas de hoje precisam encontrar meios para dar respostas eficazes a uma população cada vez mais heterogénea. É necessário lutar pelo direito de igualdade de oportunidades das crianças com NEE.

Hoje em dia, as TIC podem funcionar como uma tecnologia específica de apoio para estas crianças, pois são um recurso pedagógico, um meio de motivação, socialização e inclusão.

Este trabalho baseou-se numa experiência feita com uma amostra de 22 alunos provenientes de quatro turmas de 2º ciclo, que incluía três alunos com possível diagnóstico de discalculia. Foram elaborados dois momentos de avaliação, o pré-teste e o pós-teste, tendo sido feita uma intervenção entre os dois momentos. Esta foi efetuada recorrendo ao programa Geogebra.

Analisando a estatística efetuada, podemos concluir acerca desta experiência que o desempenho da amostra, após uma situação pedagógica deste género, melhora de um momento avaliativo para outro.
Assim, se nos centrarmos na questão de saber se o programa *Geogebra* influencia os resultados dos alunos participantes no estudo, a resposta é positiva, quase com uma confiança de 100%.

Relativamente aos alunos com NEE em causa, e relativamente ao primeiro teste, pode afirmar-se, com uma confiança quase de 100%, que os alunos I e P apresentam desempenho inferior ao dos alunos sem NEE. Em relação ao aluno A, pode afirmar-se o mesmo com uma confiança de cerca de 99%.

Em relação ao segundo teste, pode afirmar-se novamente, com uma confiança quase de 100%, que os alunos I e P apresentam desempenho inferior ao dos alunos sem NEE.

Em relação ao aluno A, no que diz respeito ao segundo teste, não se registra evidência relevante para se afirmar um pior desempenho. Antes pelo contrário, ele até teve um desempenho superior à média no segundo teste. Não foi possível descernir estatisticamente se isso se deveu à intervenção tecnológica, mas a nossa sensibilidade aponta nesse sentido.

As limitações do presente trabalho prendem-se com o facto de eu não ser professaora dos alunos em causa, pois deste modo não foi possível isolar os meninos para que não fossem influenciados com mais aprendizagens durante as aulas sobre este conteúdo. Assim não poderemos atribuir a melhoria dos resultados apenas à intervenção.

Como recomendação para estudos futuros este deve ser feito para mais alunos, e de preferência com diagnósticos confirmados, com uma amostra maior e com outro tipo de *software* educativo.

Como docentes e conhecedores da realidade escolar, sabemos que muito ficou por explorar, pois durante todo este percurso podemos verificar várias visões e práticas que no entanto por motivos práticos e por falta de tempo nos foi impossível aprofundar. Esperamos no entanto que no futuro algum investigador o possa fazer.
REFERÊNCIAS BIBLIOGRÁFICAS

Pólya, G. (1945) *Como resolver problemas, Um aspeto novo do método matemático*. C. Aberta, Gradiva.

ANEXOS

ANEXO 1: Teste de Discalculia

Este Teste de Discalculia é um questionário simples e breve que pretende ajudá-lo a identificar se tem discalculia. Não substitui um diagnóstico realizado por profissionais, pode apenas ser considerado como um pré-diagnóstico.

O diagnóstico correto e apurado terá de ser realizado por profissionais e técnicos da área. Por isso se responder “sim” a metade ou mais das perguntas consulte o mais rápido possível um profissional da área, somente este poderá diagnosticar e avaliar o melhor tratamento para a discalculia apresentada.

Instruções:

* Este teste/avaliação é recomendado para jovens (a partir dos 15 anos) e adultos de ambos os sexos
* Todas as questões devem ser respondidas baseadas no seu comportamento ou acções dos últimos meses.
* Marque o item que melhor o descreve em cada questão, certificando-se de que todas as questões são respondidas.

1: Às vezes, ao copiar os números, escreve-os na ordem errada.

- Não
- Sim

2: Ao usar um telemóvel ou telefone escrevo os números na ordem errada. Não consigo lembrar-me de números, mesmo quando os uso regularmente.

- Não
- Sim

3: Somar e subtrair são operações difíceis para mim.

- Não
- Sim

4: Não consigo compreender frações.

- Não
- Sim

5: Não compreendo o significado de números pares e ímpares.

- Não
- Sim
6: Quando alguém fala sobre números pares e ímpares tenho de pensar muito bem para identificar cada um.

● Não ● Sim

7: Nunca poderei trabalhar numa loja porque tenho dificuldade em fazer os trocos.

● Não ● Sim

8: Os relógios analógicos confundem-me sempre.

● Não ● Sim

9: Nunca consegui subtrair números grandes.

● Não ● Sim

10: Não consigo perceber a tabuada.

● Não ● Sim

11: Não consigo identificar os símbolos matemáticos, por exemplo – ou +, às vezes não sei o seu nome ou o que cada um significa.

● Não ● Sim

12: Todos na minha turma sabem o que é a raiz quadrada, mas na realidade eu não sei.

● Não ● Sim

13: Acho muito difícil copiar um conjunto de números do quadro para o caderno.

● Não ● Sim

14: Mesmo quando uso uma calculadora o resultado não está certo.

● Não ● Sim

15: Quando tenho de resolver um problema, muitas vezes perco-me e não consigo terminar.

● Não ● Sim
16: Às vezes esqueço-me do nome de formas geométricas como triângulo ou círculo.

- Não
- Sim

17: Quando resolvo um exercício matemático, a folha fica sempre uma trapalhada.

- Não
- Sim

18: Às vezes sei a resposta para um problema matemático, mas não sei explicar como lá cheguei.

- Não
- Sim

19: Fico mesmo confuso com números elevados como 1,000 e 9,999 e não consigo identificar qual é o mais elevado.

- Não
- Sim

20: Quando viajo não consigo perceber o valor do dinheiro dos outros países.

- Não
- Sim

21: Não compreendo porcentagens.

- Não
- Sim

22: Não tenho ideia de como resolver problemas do tipo “Se um homem demora 5 minutos a percorrer 10 kilômetros, quanto tempo demora a percorrer 12?”, mesmo que outros na minha turma o consigam.

- Não
- Sim

- Não
- Sim

24: Algumas vezes quando tenho de responder a uma pergunta relacionada com números, não consigo lidar bem com isso e fico muito ansioso.

- Não
- Sim

Consultado em: http://educamais.com/teste-discalculia
ANEXO 2: Teste pré-diagnóstico

1. Copia os seguintes números:
 3 ; 6 ; 8 ; 10 ; 1 ; 5 ; 9 ; 2 ; 0.
 ...

2. Escreve o número de telefone de casa ou então o número do teu telemóvel (ou do pai ou da mãe). Coloca à frente a quem pertence.
 ...

3. Resolve as seguintes operações:
 23 – 20 = 35 - 27 = 12 + 12 = 36 + 28 =
 ...

4. O que entende por “fracção”?
 ..
 ..
 ..
 ..
 ..

5. O que é um número par? E um número ímpar?
 ..
 ..
 ..
 ..
 ..

6. Da seguinte lista de números, separa os pares dos ímpares:
 2 ; 13 ; 24 ; 35; 47 ; 56 ; 69 ; 78 ; 80 ; 92 ; 100
 P A R Í M P A R
 ..
 ..

7. Vou comprar um bolo que custa setenta cêntimos e pago com uma moeda de um euro. Qual será o meu troco?
 ..
 ..
8. Que horas marca o relógio?

..

8.1. Apróxima aula começa às 17:20h. Quanto tempo falta para começar a aula?

..

..

9. Calcula a seguinte subtração:

7853491 - 56235 =

10. Completa e explica como se calcula o resultado da tabuada do 2.

\[
\begin{array}{c}
2 \times 1 = 2 \\
2 \times \ldots = 4 \\
2 \times 3 = \ldots \\
2 \times 4 = 8 \\
2 \times 5 = 10 \\
2 \times \ldots = 12 \\
2 \times 7 = 14 \\
2 \times 8 = \ldots \\
2 \times 9 = 18 \\
2 \times 10 = 20
\end{array}
\]

..

11. Indica o nome de cada uma das operações e qual o seu significado.

+ ..

- ..

12. Copia os seguintes números do quadro.

..

..

..
13. Calcula com o auxílio da calculadora:

368 x 59 =

14. A Maria foi com a mãe às compras, levaram para casa 1 Kg de bananas, 3 Kg de pêros, 2 Kg de laranjas e 5 Kg de batatas. A Maria levou o saco mais leve. Que peso carregou a mãe? Explica como chegaste à resposta.

..
..

15. Faz a legenda das seguintes figuras geométricas:

... ...

..
..

16. Escolhe qual é o maior número entre 1000 e 9999.

..

17. O que significa a expressão: “A Manuela teve 20% dos votos”?

..
..
..

18. Se um homem demora 5 minutos a percorrer 10Km, quanto tempo demora a percorrer 12 Km?

..
..

Obrigada
ANEXO 3: Pré-teste

NOME: ……………………………………… ANO: … TURMA: ….. DATA: ……..

1- As idades dos sobrinhos da D. Ana são as seguintes:

| 10 | 10 | 9 | 10 | 9 | 10 | 13 | 13 | 10 | 10 | 9 | 10 | 12 | 10 | 10 | 13 | 12 | 10 |

1.1- Organiza os dados numa tabela.

1.2- Quantos sobrinhos tem a D. Ana?

1.3- Qual é a idade média dos sobrinhos da D. Ana?

1.4- Qual é a moda das idades?

1.5- Organiza esta informação num gráfico de barras.
ANEXO 4: Pós-teste

NOME: .. ANO: …. TURMA: …. DATA:

1- As notas de Inglês da turma da Joana são as seguintes:

| 3 | 2 | 4 | 5 | 3 | 3 | 3 | 4 | 2 | 5 | 3 | 2 | 2 | 4 | 3 | 3 | 4 | 2 | 3 | 2 | 4 |

1.1- Organiza os dados numa tabela.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.2- Quantos alunos tem a turma da Joana?

1.3- Qual é a média das notas de Inglês da turma da Joana?

1.4- Qual é a moda das notas de Inglês?

1.5- Organiza esta informação num gráfico de barras.
ANEXO 5: Resultados do pré-teste

<table>
<thead>
<tr>
<th>Pergunta</th>
<th>1.1</th>
<th>1.2</th>
<th>1.3</th>
<th>1.4</th>
<th>1.5</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>0</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>0</td>
<td>60%</td>
</tr>
<tr>
<td>R</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>40%</td>
</tr>
<tr>
<td>S</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>20</td>
<td>60%</td>
</tr>
<tr>
<td>V</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>10</td>
<td>50%</td>
</tr>
<tr>
<td>P</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20%</td>
</tr>
<tr>
<td>H</td>
<td>0</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>80%</td>
</tr>
<tr>
<td>L</td>
<td>0</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>10</td>
<td>70%</td>
</tr>
<tr>
<td>Q</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>20</td>
<td>60%</td>
</tr>
<tr>
<td>X</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>40%</td>
</tr>
<tr>
<td>J</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20%</td>
</tr>
<tr>
<td>U</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>40%</td>
</tr>
<tr>
<td>N</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>10</td>
<td>50%</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>0</td>
<td>60%</td>
</tr>
<tr>
<td>O</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>40%</td>
</tr>
<tr>
<td>T</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>20</td>
<td>60%</td>
</tr>
<tr>
<td>I</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>40%</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>20</td>
<td>60%</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>40%</td>
</tr>
<tr>
<td>C</td>
<td>20</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>60%</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20%</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>40%</td>
</tr>
</tbody>
</table>
ANEXO 6: Resultados pós-teste

<table>
<thead>
<tr>
<th>Pergunta</th>
<th>1.1</th>
<th>1.2</th>
<th>1.3</th>
<th>1.4</th>
<th>1.5</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>0</td>
<td>80%</td>
</tr>
<tr>
<td>R</td>
<td>20</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>20</td>
<td>80%</td>
</tr>
<tr>
<td>S</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>100%</td>
</tr>
<tr>
<td>V</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>20</td>
<td>60%</td>
</tr>
<tr>
<td>P</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>30%</td>
</tr>
<tr>
<td>H</td>
<td>0</td>
<td>20</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>60%</td>
</tr>
<tr>
<td>L</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>40%</td>
</tr>
<tr>
<td>Q</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>20</td>
<td>60%</td>
</tr>
<tr>
<td>X</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>10</td>
<td>50%</td>
</tr>
<tr>
<td>J</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>40%</td>
</tr>
<tr>
<td>U</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20%</td>
</tr>
<tr>
<td>N</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>40%</td>
</tr>
<tr>
<td>D</td>
<td>20</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>20</td>
<td>80%</td>
</tr>
<tr>
<td>O</td>
<td>20</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>20</td>
<td>80%</td>
</tr>
<tr>
<td>T</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>100%</td>
</tr>
<tr>
<td>I</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20%</td>
</tr>
<tr>
<td>G</td>
<td>20</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>20</td>
<td>80%</td>
</tr>
<tr>
<td>F</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>80%</td>
</tr>
<tr>
<td>E</td>
<td>20</td>
<td>20</td>
<td>10</td>
<td>20</td>
<td>20</td>
<td>90%</td>
</tr>
<tr>
<td>C</td>
<td>20</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>20</td>
<td>80%</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>10</td>
<td>70%</td>
</tr>
<tr>
<td>A</td>
<td>20</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>10</td>
<td>70%</td>
</tr>
</tbody>
</table>