Impact of breast cancer treatments on sleep disturbances – A systematic review

Ana Rute Costa a, b, Filipa Fontes a, b, Susana Pereira b, c, Marta Gonçalves a, b, d, Ana Azevedo a, b, Nuno Lunet a, b, *

a Department of Clinical Epidemiology, Predictive Medicine and Public Health, University of Porto Medical School, Porto, Portugal
b EPUnit — Institute of Public Health of the University of Porto (ISPUP), Porto, Portugal
c Department of Neurology, Portuguese Oncology Institute, Porto, Portugal
d Department of Psychiatry and Sleep Medicine Center, CUF Porto Hospital, Porto, Portugal

ABSTRACT

Sleep disturbances are highly prevalent in women with breast cancer; side effects of cancer treatment may worsen pre-existing sleep problems and have been pointed to as important determinants of their incidence. Therefore, we aimed to assess the association between different types of breast cancer treatment and sleep disturbances, through a systematic review. Medline (using PubMed), CINAHL Plus with full text, PsycINFO and Cochrane Central Register of Controlled Trials (Central) were searched from inception to January 2014. Studies that evaluated samples of women with breast cancer, assessed sleep disturbances with standardized sleep-specific measures, and provided data for different cancer treatments were eligible. A total of 12 studies met the inclusion criteria. Three studies evaluated insomnia, five studies assessed sleep quality, two provide data on general sleep disturbances and two analysed specific sleep parameters. Women submitted to chemotherapy, or radiotherapy, tended to report higher levels of sleep disturbances. More heterogeneous findings were observed regarding the effect of surgical treatment and hormonal therapy. However, a sound assessment of the impact of these treatments was hampered by differences across studies regarding the outcomes assessed, reporting bias and the fact that most studies did not control for the effect of potential confounders. The present review highlights the potential relation between breast cancer treatments and sleep disturbances, particularly of chemotherapy, though more robust evidence is needed for a proper understanding of these associations.

Introduction

In the last decades, the trends towards earlier detection of breast cancer and use of more effective treatments have resulted in higher incidence and improved survival, along with lower mortality rates [1–3]. Currently, breast cancer is one of the most frequent, with an estimated 1.7 million new cases diagnosed in 2012, corresponding to 25% of all cancers among women [4]. It is also a major contributor to the overall number of disability-adjusted life-years (DALYs) lost due to oncological diseases. In countries with a very high human development index, the years of life lived with disability account for over one-third of the age-adjusted DALYs due to breast cancer [5], which highlights the importance of a comprehensive assessment of its burden.

Sleep disorders are defined as a specific diagnostic of a wide range of problems characterized by the symptoms of insomnia, excessive day sleepiness and/or abnormal movements, behaviours, or sensations [6]. However, different terms related to sleep disorders have been used in the literature, namely sleep disturbances, insomnia, impaired sleep, sleep patterns and sleep-wake disturbances. Since most of the studies in this topic include the evaluation of sleep disorders, global sleep quality or other sleep characteristics, sleep disturbances have been previously used to name all sleep-related outcomes [7].
Breast cancer patients often complain of sleep problems; it is estimated that the prevalence of poor sleep in breast cancer patients range from 20 to 70% [8], depending on the study design and method of assessment. The proportion of sleep disturbances in this population is higher than the observed in healthy adults [9,10], and in other oncological patients [11]. These findings are particularly relevant since sleep disturbances have a negative impact on the physiological and psychological functions, including immune function [12], cognitive impairment [13], depression [14] and fatigue [15], being likewise a strong predictor of different measures of quality of life in this population [16].

The aetiology of sleep disturbances in breast cancer patients is multi-factorial; in fact, demographic, environmental and lifestyle factors, psychological disturbances and comorbid medical disorders have been pointed to as main factors contributing for its occurrence [8,17,18]. Cancer-related treatments, and their wide range of side effects, are other important feature frequently associated with the occurrence of sleep disturbances [19,20]. In addition, breast cancer diagnosis and associated treatments, may also contribute for worsening pre-existing sleep problems [21]. Therefore, we aimed to assess the relation between different types of breast cancer treatment and sleep disturbances, through a systematic review of the published evidence.

Methods

We searched Medline (using PubMed), PsycINFO and Cochrane Central Register of Controlled Trials (Central), from inception to January 2014, with the following search expression: (sleep* OR insomnia OR circadian rhythm OR para-somnia OR hypersonnia OR awakening OR somnolence OR drows-i ness OR wakefulness) AND breast cancer. Searches in CINAHL Plus with full text were expanded to also include related words.

Observational and experimental studies addressing the effect of breast cancer treatments (i.e., surgical treatment, chemotherapy, radiotherapy and hormonal therapy) on sleep disturbances were eligible. There were no language restrictions.

The exclusion criteria were the following: 1) studies not involving humans (in vitro or research conducted in animals); 2) case reports, qualitative research studies, non-systematic reviews or reviews not addressing the impact of breast cancer treatments on sleep disturbances, guidelines, conference or meeting abstracts and theses; 3) studies not involving women with breast cancer; 4) studies addressing the role of sleep disturbances as a risk factor for breast cancer; 5) studies not providing data on sleep disturbances evaluated with standardized sleep-specific measures, such as sleep questionnaires with established psychometric properties of validity and reliability, sleep diary, actigraphy or polysomnography; 6) studies not presenting quantitative data on sleep measures for different breast cancer treatments.

In addition, we excluded all studies that only evaluated circadian phase markers, including melatonin and core body temperature, as well as cortisol and other endocrine hormones. This is because there is insufficient evidence to recommend circadian phase markers for routine clinical evaluation of circadian rhythm sleep disorders, as some of these biomarkers are strongly affected by many other factors that may mask the underlying circadian signals [22–24].

After the identification of potentially relevant references of original studies and the exclusion of multiple reports of the same article, we performed an initial screening of the reference list based on their titles and abstracts. Further, we conducted a detailed assessment of the full texts and extracted data from those that met the selection criteria. The reference lists of the studies selected for inclusion in the systematic review were also screened, following the same criteria, to identify other potentially eligible reports.

From each paper selected for the systematic review, we collected data regarding the country where the study was conducted, the type of study (clinical trial, cohort, case–control, cross-sectional), sample characteristics (sample size, age, cancer stage, time since diagnosis), instruments used to assess sleep disturbances, estimates of the association between breast cancer treatments and sleep characteristics, or the necessary information to compute them, and strategies used to control confounding, whenever applicable. When multiple reports from the same study were identified, we extracted data from the report providing the most detailed and/or valid estimates of the effects of cancer treatments on sleep. Regarding prospective studies with evaluations at different moments after baseline, only the results corresponding to the longest follow-up were extracted.

The screening of the reference lists, selection of papers for the review and data extraction, were accomplished independently by two researchers (ARC, FF), following predefined criteria. Discrepancies in the assessment performed by the two reviewers were resolved by consensus or involving a third researcher (NL). A detailed flowchart of the systematic review is presented as Fig. 1.

Due to the heterogeneity of the methods used for the assessment of sleep disturbances, and options for presentation of results, it was not possible to perform a quantitative synthesis of the main findings. Therefore, the impact of different breast cancer treatments on sleep was analysed taking into account the direction and statistical significance of the associations observed when comparing each treatment with a reference group (other treatment or absence of that specific type of treatment). The results were classified as "lower levels of sleep disturbances" when the breast cancer treatments being assessed were negatively associated with the occurrence of sleep disturbances, or "higher level of sleep disturbances" when a positive relation was observed. Additionally, the results were classified in relation to the corresponding P-values and categorized as follows: <0.050 (statistically significant); ≥0.050 and <0.100 (close to statistical significance); ≥0.100 (not statistically significant). Whenever necessary, additional comparisons between treatments were computed by the authors of the present systematic review, using the chi-square test for categorical variables, or the t-test for continuous variables. When the studies evaluated several sleep-related outcomes, only one result, corresponding to the strongest and/or statistically significant relation between treatment and sleep disturbances, was considered.

Results

Twelve studies were included in the systematic review [13,16,25–34], which are described in detail in Appendix 1. Most of these investigations were conducted in North America (10 in the United States [16,25–28,30–34] and one in Canada [13]) and one was from Denmark [29]. The reports were published between 1998 and 2013, but mostly since 2011 (58% of the studies). The median sample size was 101, ranging between 32 and 3002. Nearly all analyses of the effects of cancer treatment on sleep were cross-sectional, and longitudinal data was retrieved from one study [27]. The patients' age ranged between 26 and 89 years, and most studies included only non-metastatic breast cancer patients; only two reports included metastatic breast cancer patients [27,30]. In most studies, data were collected after surgery or after completion of chemotherapy and/or radiotherapy, with the exception of two cohort studies, one with a baseline assessment prior to surgery and with monthly assessments for six months following surgery [27].
Fig. 1. Systematic review flowchart.
and another that evaluated sleep parameters only during chemotherapy treatments [34]. Furthermore, the full range of the treatments received by the patients in each of the groups being compared is not described in most studies.

A summary of the methodological characteristics potentially associated with bias or confounding is presented in Table 1. Regarding the timing of assessment of sleep, only one study stated the evaluation of the participants before surgical treatment [27]. The estimates available from six studies did not control for the effect of potential confounders [13,25,26,31,32,34]. In four studies, the impact of breast cancer treatments on sleep disturbances were not fully reported because the results were not statistically significant [16,27,32,33].

Concerning the evaluation of sleep disturbances, six different sleep-specific instruments were used (Table 2), including five types of subjective assessment [mostly based on the Pittsburgh Sleep Quality Index (PSQI)], and one type of objective measurement of sleep (wrist actigraphy). Insomnia was evaluated in three studies included in this systematic review [13,25,31]. Five studies evaluated sleep quality [16,28,29,32,33], two assessed general sleep disturbances [26,27] and two provided data on specific sleep parameters [30,34].

The association between breast cancer treatments and sleep disturbances is summarized in Fig. 2.

Surgical treatment

The effect of different surgical treatments on sleep was evaluated in two studies [26,29] (Fig. 2A). Mastectomy and lumpectomy were associated with lower levels of disturbances when compared to no surgical treatment (in this case, women were only submitted to breast biopsy) [26], though not statistically significant. Inconsistent findings were observed regarding the effect of mastectomy when compared with lumpectomy [26,29].

Chemotherapy

Overall, a tendency for higher levels of sleep disturbance was observed in women submitted to chemotherapy [27,28,30,31], although the opposite was observed in three studies (not statistically significant in two) [25,27,29]. When compared with radiotherapy, chemotherapy was also associated with higher levels of sleep disturbances [31,33]. Regarding the comparison between different types of chemotherapy, doxorubicin [34] and FEC (fluorouracil (5-FU) + epirubicin + cyclophosphamide) regimens may have higher prevalence of sleep disturbances [13]. Women treated with taxane agents had lower prevalence of sleep disturbance than those treated with chemotherapy without taxane agents [13,25] (Fig. 2B).

Radiotherapy

Breast cancer patients submitted to radiotherapy tended to report higher levels of sleep disturbances than those not submitted to this type of treatment [25,29–31]. However, as previously mentioned, when radiotherapy was compared with chemotherapy, lower levels of sleep disturbances were observed [31,33] (Fig. 2C).

Hormonal therapy

As shown in Fig. 2D, two studies showed that women submitted to hormonal therapy were more prone to report sleep disturbances than those not receiving this type of treatment [29,30]. Although one study found higher levels of sleep disturbances in women treated with tamoxifen [31], two other studies reported lower levels in those women [16,25]. In addition, women taking anastrozole presented higher prevalence of insomnia, when compared with women taking letrozole or exemestane, although these associations were not statistically significant [25].

Discussion

This systematic review provides an overview of the best available evidence on the association between different breast cancer treatments and sleep disturbances.

Despite the inconsistent results, women submitted to chemotherapy, as well as radiotherapy, tended to report higher levels of sleep disturbances. Less consistent results were observed regarding the impact of surgical treatments and hormonal therapy. However, the achievement of most robust findings was hampered by the heterogeneity of sleep-related outcomes and their assessment, the partial description of all treatments received by the patients, the absence of control for confounding observed in most of the studies, and the presence of reporting bias.

Breast cancer treatments have several associated side effects, which may contribute to impaired sleep in these patients. The cumulative effect of toxic agents on body functions, the physical impact of distressing symptoms (including nausea, vomiting, diarrhoea, urinary frequency or skin reactions related with radiotherapy), changes in body image and hospitalization, as well as other comorbidity-related conditions (e.g.: pain, fatigue, depression, anxiety, stress), are frequently reported as the main cause or aggravating factor for sleep disturbances in this population [17,18,41]. Another potential risk factor for sleep disturbances among breast cancer patients is the high proportion of vasomotor symptomatology, namely hot flashes and night sweats, as a side effect of chemotherapy-induced ovarian disruption or hormonal therapy following chemotherapy [42]. Additionally, surgical procedures are associated with functional impairment, producing pain and inflammatory responses that can impair sleep and anaesthetics.
may adversely affect sleep quality and waking for prolonged periods [43]. Although we could expect higher levels of sleep disturbances among women undergoing mastectomy than those receiving breast conserving surgery, this was not confirmed in our study.

For a better understanding of the relation between breast cancer treatment and sleep disturbances, more prospective studies with baseline evaluations before treatment are needed. In fact, previous studies have shown that women with breast cancer frequently report higher levels of sleep disturbances prior to treatment [15,44,45], whereas for some patients the onset of insomnia followed the breast cancer diagnosis and others reported that cancer either caused or aggravated their sleep difficulties [21]. In the only prospective study included in our systematic review that evaluated sleep disturbances prior to treatments, it was possible to observe a slight increase followed by a decrease in sleep disturbances, although the scores remained above the clinically meaningful cutoff for sleep disturbances [27]. The trajectory of disruptive symptoms during treatments also seems to be particularly influenced by pre-treatment symptoms [46].

Despite the increasing interest observed in the last few years regarding the impact of breast cancer and their treatments on sleep disturbances, the assessment of these outcomes also needs to be improved. In fact, several studies were excluded because they did not evaluate sleep with standardized sleep-specific measures. Similar findings were observed in a previous systematic review regarding the methodological approaches of sleep disturbances and quality of life in adults with cancer: of the 40 studies included only four used a multi-item sleep specific instrument [7]. According to the recommendations for a standard research assessment of sleep or insomnia symptoms, in epidemiological studies, these characteristics should be evaluated with global sleep and insomnia measures (namely PSQI and Insomnia Severity Index), sleep diary, actigraphy or polysomnography [47]. Thus, we opted to only include those studies using these types of sleep measures, aiming to guarantee the quality of sleep assessment. None of the studies included evaluated sleep disorders with polysomnography, which is the gold standard for the assessment of sleep disorders, possibly reflecting the costs and efforts that this measure implies. Additionally, even when different studies used the same instrument, distinct sleep-related outcomes were provided in the reports; this hindered the comparison of the impact of breast cancer treatments by type of sleep disturbance.

Although no formal assessment of selection bias could be accomplished due to the heterogeneity of data presented in each study, a total of 12 reports were excluded because they did not present any quantitative estimates regarding the association between breast cancer treatment and sleep disturbances [48–59]. With the exception of one study that reported that women taking tamoxifen had poorer sleep quality than those not submitted to this treatment [58], all of the other studies did not report the direction...
of the results. Also, some of the reports included in this systematic analysis underreported results without statistical significance, which may have overestimated our assessment of the impact of breast cancer treatments on sleep disturbances. Three of the 12 studies included in our review reported data on several sleep-related outcomes, and we opted to include in the figures summarizing evidence only those corresponding to the strongest and/or statistically significant relation between treatment and sleep disturbances; although this strategy for data synthesis may also have contributed to overestimating the relation between treatments and these side effects, it is more sensitive for the detection of potentially deleterious effects of treatments.

Another important issue refers to the fact that the associations between breast cancer treatments and sleep disturbance may be misestimates due to the lack of control for potential confounding; in fact, only six of the studies included in the systematic review presented adjusted estimates. Of the wide range of potential confounders, for instance, cancer stage, age and menopausal status appear to be crucial variables. Indeed, treatments options are dependent of cancer stage and related features (e.g., tumour size) [60,61], and prevalence of sleep disturbances has been associated with this factor [21]. Age is also taken into account when deciding breast cancer treatments [62], and changes in sleep patterns and higher prevalence of sleep disorders were observed with increasing age [63]. Additionally, menopausal status may determine the type of breast cancer treatments, particularly hormonal therapy [64,65], and postmenopausal women were more likely to present impaired sleep than pre-menopausal [29,66]. Socio-economic factors [67,68] and presence of other co-morbidities [41,62] may also need to be considered in data analysis as potential confounders.

This systematic review highlights the need for improvements in methodological procedures in future studies, particularly the achievement of a consensual definition of sleep disturbances, use of adequate tools for sleep evaluation, longitudinal analysis of sleep disturbances, with evaluations preformed prior to treatments, as well as control for the effect of possible confounders. Our results do not exclude the hypothesis that breast cancer treatments, particularly chemotherapy, are associated with sleep disturbances, but more robust evidence is needed for a proper understanding of the effects of treatment regimens on this outcome with potential impact in the patients’ quality of life.

Conflict of interest statement

The authors have no conflicts of interest to disclose.

Financial support

The authors have no financial support to disclose.

Ethical approval

This article is a systematic review of the literature, and therefore no ethical approval was required.

Appendix 1. Detail description of the studies addressing the association between breast cancer treatments and sleep disturbances.
<table>
<thead>
<tr>
<th>1st author, Year of publication (REF)</th>
<th>Study description</th>
<th>Subjects characteristics</th>
<th>Association between breast cancer treatments and sleep disturbances</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Type of study: Cross-sectional</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aim: “To evaluate the relationship between insomnia and objective (…) and subjective (…) measures of cognitive functioning”</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Study population: Women treated for a first diagnosis of Stage-1 through Stage-3 BCA combining surgery, CTX, and RT in the past 4 months and having received HT for a minimum of 5 weeks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sample size: n = 63</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>“Insomnia”: n = 47 vs. “Good sleepers”: n = 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Study description</td>
<td>Subjects characteristics</td>
<td>Association between breast cancer treatments and sleep disturbances</td>
</tr>
<tr>
<td></td>
<td>Age (yr), Range: 30–60</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cancer stage, n (%): Stage I: 14 (22.2), Stage II: 29 (46.0), Stage III: 20 (31.7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Treatments, n (%): CTX regimen: FEC: 3 (4.8), FEC + Taxane: 18 (28.6), AC: 24 (38.1), AC + Taxane: 18 (28.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Treatment comparison: FEC vs. AC(6) (with or without taxane) vs. No CTX Taxane vs. No taxane(7) (FEC or AC)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Main results: Insomnia: 90.5% vs. 66.7%, p = 0.041(6) Insomnia: 69.4% vs. 81.5%, p = 0.277(7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control of confounding: –</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Period of data collection: 2008–2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Type of study: Cross-sectional</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aim: “To understand the prevalence and risk factors for insomnia in postmenopausal BCA patients receiving AIs”</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Study population: Postmenopausal women with stage 0–III BCA receiving a third generation AI, who had completed CTX or RT at least 1 month prior to enrolment, Current HT: Lumpectomy and/or mastectomy</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sample size: n = 413</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>“Clinical insomnia”: n = 77 vs. “No clinical insomnia”: n = 336</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Study description</td>
<td>Subjects characteristics</td>
<td>Association between breast cancer treatments and sleep disturbances</td>
</tr>
<tr>
<td></td>
<td>Age (yr), Mean: 61.7, Range: 33–88</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cancer stage, n (%): Stage I: 167 (40.4), Stage II: 195 (47.2), Stage III: 51 (12.4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time since diagnosis, n (%): <2 yr: 132 (32.0), 2–5 yr: 132 (32.0), 5–10 yr: 102 (24.7), ≥10 yr: 47 (11.4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Treatments, n (%): CTX with or without taxane vs. No CTX CTX + taxane vs. CTX without taxane RT vs. No RT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Main results: Insomnia: 17.6% vs. 20.3%, p = 0.509(6) Insomnia: 13.7% vs. 18.1%, p = 0.875(7) Insomnia: 19.8% vs. 16.0%, p = 0.363(8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control of confounding: –</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Starkweather, 2013 [26]</td>
<td>Country: USA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Period of data collection: 2003–2006</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Type of study: Cross-sectional</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aim: “To examine the relationships among pro- and anti-inflammatory biomarkers and CTX (with or without taxane) vs. No CTX”</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Study population: Mastectomy vs. Lumpectomy vs. No surgical treatment(9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sample size: n = 413</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>“Clinical insomnia”: n = 77 vs. “No clinical insomnia”: n = 336</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Study description</td>
<td>Subjects characteristics</td>
<td>Association between breast cancer treatments and sleep disturbances</td>
</tr>
<tr>
<td></td>
<td>Age (yr), Mean (SD): 47.7 (7.7), Range: 27–63</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cancer stage: Stage I–Stage III Time since diagnosis: Mastectomy: 21 (65.6), Lumpectomy: 7 (21.9), Breast biopsy: 4 (12.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Treatments, n (%): Mastectomy vs. Lumpectomy vs. No surgical treatment(9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Main results: Sleep disturbances: Mean (SD): 45.6 (21.1) vs. 38.1 (10.6), p = 0.38 Mean (SD): 45.6 (21.1) vs. 52.8 (16.3), p = 0.527(9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control of confounding: –</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(continued on next page)
<table>
<thead>
<tr>
<th>1st author, Year of publication (REF)</th>
<th>Study description</th>
<th>Subjects characteristics</th>
<th>Association between breast cancer treatments and sleep disturbances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Van Onselen, 2013 [27]</td>
<td>Country: USA</td>
<td>Type of study: Cohort</td>
<td>Study population: Women with early-stage BCA at 1 month following fine needle biopsy or breast tumour resection (lumpectomy or mastectomy) but prior to induction of CTX. Sample size: n = 32.</td>
</tr>
<tr>
<td></td>
<td>Aim: To evaluate how sleep disturbance and daytime sleepiness changed from before to 6 months following surgery and whether certain characteristics predicted initial levels and/or the trajectories of these parameters. Study population: Women who underwent unilateral BCA surgery were enrolled prior to surgery and evaluated monthly for 6 months. Sample size: n = 396.</td>
<td>Age (yr), Mean (SD): 54.9 (11.6). Cancer stage, n (%): Stage 0: 73 (18.3), Stage I:151 (37.9), Stage II A, II B: 141 (35.4), Stage III A, III B, III C, IV:33 (8.3). Treatments, n (%): Breast-conserving: 318 (79.9), Mastectomy: 80 (21.0). Sentinel node biopsy: 328 (82.4), Axillary lymph node dissection: 149 (37.4), Breast reconstruction at the time of surgery: 86 (21.6).</td>
<td>Mean (SD): 38.1 (10.6) vs. 52.8 (16.3), p = 0.100. Daytime sleepiness: Coefficient (SE) from Linear Model: -0.178 (0.069), p < 0.05. Coefficient (SE) from Quadratic Model: 0.019 (0.011), p = NS. Sleep disturbance: Coefficient (SE) from Linear Model: 3.277 (0.874), p < 0.001. Coefficient (SE) from Quadratic Model: -0.421 (0.144), p < 0.01. Daytime sleepiness: Coefficient (SE) from Linear Model: -0.368 (0.056), p < 0.001. Coefficient (SE) from Quadratic Model: -0.036 (0.009), p < 0.001.</td>
</tr>
<tr>
<td>Bower, 2011 [28]</td>
<td>Country: USA</td>
<td>Type of study: Cross-sectional</td>
<td>Aim: To characterize the prevalence and comorbidity of fatigue, depressive symptoms, and sleep disturbance (...); to determine the contribution of treatment-related factors to behavioural symptoms and inflammation (...); and to test the hypothesis that inflammatory processes would contribute to these symptoms. Study population: Women who completed surgery and evaluated monthly for 6 months. Sample size: n = 396.</td>
</tr>
</tbody>
</table>
primary cancer treatment (surgery, RT, and/or CTX) within the past 3 months and not yet started ETSample size: n = 103

Han, 2011 [29]

Country: DNK
Period of data collection: 2001 e 2004
Type of study: Cross-sectional analysis
Aim: To investigate “the prevalence and predictors of clinically significant sleep difficulty in women with primary BCA”
Study population: Women included in a nationwide cohort of Danish women treated for primary BCA completed questionnaires three to four months post-surgery
Sample size: n = 3002

“No Sleep Difficulty” (PSQI/C20 5): n = 1264 vs. “Sleep Difficulty” (PSQI/C21 5): n = 1738

Age (yr), Mean: 54.4, Range: 26 e 70
Tumour grade, n (%): 1: 720 (23.8), 2: 1094 (36.2), 3: 636 (21.1), Nonductal: 570 (18.9
Treatments, n (%):
- Type of surgery: Mastectomy: 1607 (53.5), Lumpectomy: 1395 (46.5);
- CTX: 1335 (44.5);
- HT: 1117 (37.2);
- RT: 1300 (43.3)

Lumpectomy vs. Mastectomy
No CTX vs. CTX
Previous RT vs. No RT
HT vs. No HT

Sleep difficulty: 59.7% vs. 56.6%, p = 0.14
Adjusted OR: 1.22, p = 0.015
Sleep difficulty: 59.1% vs. 56.4%, p = 0.15
Premenopausal women: Adjusted OR: 1.29, p = 0.16
Menopausal women: NS
Sleep difficulty: 59.8% vs. 56.4%, p = 0.06
Sleep difficulty: 60.2% vs. 56.6%, p = 0.06

Multivariate analysis including age, marital status, ethnicity, education, personal income, household wealth, municipality size, breast cancer history, psychiatric history, family history of breast cancer, smoking, alcohol use, physical activity, physical functioning, depression and anxiety

Rand, 2011 [16]

Country: USA
Type of study: Cross-sectional analysis
Aim: “To evaluate the relationships among measures of hot flashes, perceived hot flush interference, sleep disturbance, and (….) QL”
Study population: BCA survivors due to receive AI as initial adjuvant HT or following adjuvant tamoxifen and completed adjuvant CTX if indicated
Sample size: n = 395

Age (yr), Mean (SD): 59.3(8.7), Range: 35-89
Cancer stage: Stage 0 e Stage III
Treatments:
- Time since first surgery for BCA, Mean (SD): 16.4 months (20.4)
- Prior tamoxifen vs. No prior tamoxifen
- CTX (with or without RT) vs. No CTX
- RT (with or without CTX) vs. No RT
- CTX vs. RT
- Tamoxifen (ever) vs. No tamoxifen

Sleep disturbance: Adjusted OR: 1.22, p = 0.05

Insomnia: 40.0% vs. 38.6%, p = 0.651
Insomnia: 39.4% vs. 39.0%, p = 0.834
Insomnia: 39.0% vs. 38.4%, p = 0.828
Insomnia: 39.9% vs. 37.9%, p = 0.307

Bardwell, 2008 [31]

Country: USA
Type of study: Cross-sectional analysis
Aim: To assess the relative importance of a wide range of risk factors for insomnia in women in history of BCA
Study population: Women treated for breast cancer, completed questionnaires 3-4 months post-surgery
Sample size: n = 135

Age (yr), Mean: 53, Range: 28-74
Cancer stage, n (%): Stage I: 1033 (39.0), Stage II: 1488 (56.2), Stage III: 125 (4.7)
Time since diagnosis, n (%): <1 yr: 615 (23.2), 1-1.9 yr: 836 (31.6), 2-2.9 yr: 320 (11.6), 3-3.9 yr: 191 (7.0), 4-4.9 yr: 110 (4.1), 5 or more yr: 113 (4.2)
CTX (with or without RT) vs. No CTX
RT (with or without CTX) vs. No RT
CTX vs. RT
Tamoxifen (ever) vs. No tamoxifen

(continued on next page)
Study Description and Subjects Characteristics

<table>
<thead>
<tr>
<th>Study Description</th>
<th>Subjects Characteristics</th>
<th>Association between Breast Cancer Treatments and Sleep Disturbances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study Population:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women ≤ 4 years post-treatment for Stage I (≥ 1 cm) = IIA BCA</td>
<td>2–2.9 yr: 654 (24.7), 3–4 yr: 541 (20.4)</td>
<td></td>
</tr>
<tr>
<td>Sample size: n = 2646</td>
<td>Treatments, n (%): Surgery + RT: 518 (19.6); Surgery + CTX: 720 (27.2); Surgery + CTX + RT: 1113 (42.1);</td>
<td></td>
</tr>
<tr>
<td>"Insomnia": n = 1039 vs. "No insomnia": n = 1607</td>
<td>Surgery only: 295 (11.1); Tamoxifen: Current: 1589 (60.1), Former: 191 (7.2), Never: 866 (32.7)</td>
<td></td>
</tr>
</tbody>
</table>

Control of Confounding

- Hierarchical regression adjusted for CTX, pain, depression
- Sleep efficiency:
 - CTX vs. No CTX: rho = 0.29, p < 0.05
 - RT vs. No RT: rho = 0.09, p > 0.05
- Mean number of wake episodes:
 - CTX vs. No CTX: rho = 0.25, p < 0.05
 - RT vs. No RT: rho = 0.25, p > 0.05
 - HT vs. No HT: rho = 0.25, p > 0.05
- Average wake episode period:
 - CTX vs. No CTX: rho = 0.25, p < 0.05
 - RT vs. No RT: rho = 0.25, p > 0.05
 - HT vs. No HT: rho = 0.25, p > 0.05

Main Results

- Sleep disturbance: Mean (SD): 1.52 (0.64) vs. 1.24 (0.58), p < 0.06 (NS)

References

1. Fortner, 2002 [32]

Notes

- CTX = Chemotherapy
- RT = Radiotherapy
- HT = Hormone Therapy
- WASO = Wake After Sleep Onset
Cross-sectional Aim: To “describe sleep in a heterogeneous sample of breast cancer patients (…) and examined the relation between sleep disturbance and health-related QL.”

Study population: Breast cancer patients presenting to an outpatient oncology clinic (19 pre-cancer treatment, 29 receiving cancer treatment, 23 post-cancer treatment)

Sample size: \(n = 72 \)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>CTX or RT: 41%</th>
<th>SX vs. RT: 24%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sleep latency:</td>
<td>Mean (SD): 1.31 (1.04) vs. 0.93 (0.84), (p < 0.10) (NS)</td>
<td></td>
</tr>
</tbody>
</table>

Stein, 2000 [33]

Country: USA
Type of study: Cross-sectional analysis
Aim: To “(…) document the prevalence and severity of hot flashes (…) during treatment for BCA; (…) identify medical, demographic, and treatment correlates of hot flashes during BCA treatment; and (…) determine the impact of the hot flashes on (…) QL.”

Study population: Postmenopausal women with BCA evaluated during CTX or RT

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yr), Range</td>
<td>39-81</td>
</tr>
<tr>
<td>Cancer stage, n (%):</td>
<td>Stage I: 29 (41.4), Stage II: 34 (48.6), Stage III: 7 (10.0)</td>
</tr>
<tr>
<td>Treatments, n (%):</td>
<td>Type of Surgery: Mastectomy: 24 (34.3), Lumpectomy: 43 (61.4), Breast Biopsy: 3 (4.3); CTX: 28 (40); RT: 42 (60); Tamoxifen: 6 (8.6)</td>
</tr>
</tbody>
</table>

Berger, 1998 [34]

Country: USA
Type of study: Cohort
Aim: To describe “patterns of fatigue and of activity and rest and the relationship between these variables”

Study population: Newly diagnosed women with stage I or II BCA during the first three adjuvant

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yr), Mean (SD):</td>
<td>49.5 (6.64), Range: 33—69</td>
</tr>
<tr>
<td>Cancer stage, n: Stage I: 32, Stage II: 40</td>
<td></td>
</tr>
<tr>
<td>Tumor node status:</td>
<td>Positive: 33, Negative: 39</td>
</tr>
<tr>
<td>Treatments, n (%):</td>
<td>Type of Surgery: Breast conservation: 34, Modified radical mastectomy with reconstruction: 10, Modified radical mastectomy without reconstruction: 28;</td>
</tr>
</tbody>
</table>

Sleep Quality: \(\beta = -0.11, \quad p \geq 0.10 \)

Multivariate analysis including education

(continued on next page)
Association between breast cancer treatments and sleep disturbances

<table>
<thead>
<tr>
<th>Treatment comparison</th>
<th>Main results</th>
<th>Control of confounding</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTX - adjuvant regimen vs. 22.13 (11.00), p = 0.935</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMF: 26, AC: 20, CAF: 26; Doxorubicin: 46; Non-doxorubicin: 26</td>
<td>n+ cyclophosphamide; AI, aromatase inhibitors; BCA, breast cancer; BMI, body mass index; CAF, cyclophosphamide, doxorubicin, and fluorouracil; CMF, cyclophosphamide, methotrexate, and fluorouracil; CTX, cyclophosphamide; HT, hormonal therapy; NS, not statistically significant; OR, odds ratio; PQLQ, Pittsburgh Sleep Quality Index; RR, relative risk; SE, standard error; SD, standard deviation; SSRI, selective serotonin reuptake inhibitor; USA, United States of America; WASO, wake after sleep onset; yr, years.</td>
<td></td>
</tr>
</tbody>
</table>

(continued)

References

Kim HJ, McDermott PA, Barsevick AM. Comparison of groups with different

Levine DW, Dailey ME, Rockhill B, Tipping D, Naughton MJ, Shumaker SA.

Bastien CH, Valli

Buysse DJ, Reynolds 3rd CF, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh

Buysse DJ, Ancoli-Israel S, Edinger JD, Lichstein KL, Morin CM. Recommen-

Ancoli-Israel S, Liu L, Marler MR, Parker BA, Jones V, Sadler GR, et al. Fatigue,

Berger AM, Parker KP, Young-McCaughan S, Mallory GA, Barsevick AM,

Lee KA. Self-reported sleep disturbances in employed women. Sleep 1992;15:

Bastien CH, Vallieres A, Morin CM. Validation of the insomnia severity index

Levine DW, Dailey ME, Rockhill B, Tipping D, Naughton MJ, Shumaker SA.

Validation of the women’s health initiative insomnia rating scale in a multi-

Lee TK, Jacobsen PB, Hann DM, Greenberg H. Lyman G. Impact of hot flashes

on quality of life among postmenopausal women being treated for breast

Berger AM. Patterns of fatigue and activity and rest during adjuvant breast

Buysse DJ, Reynolds 3rd CT, Monk TH, Berman SR, Kuper DJ. The Pittsburgh

sleep index; a new instrument for psychiatric practice and research.

Lee KA. Self-reported sleep disturbances in employed women. Sleep 1992;15:

493–8.

Lee KA. Self-reported sleep disturbances in employed women. Sleep 1992;15:

493–8.

Bastien CH, Vallieres A, Morin CM. Validation of the insomnia severity index

as an outcome measure for insomnia research. Sleep Med 2001;2(4):

297–307.

Levine DW, Dailey ME, Rockhill B, Tipping D, Naughton MJ, Shumaker SA.

Validation of the women’s health initiative insomnia rating scale in a multi-

Morin CM. Insomnia: psychological assessment and management. New York:

Practice parameters for the use of actigraphy in the assessment of sleep and

data; a classiﬁcation tree approach. BMC Cancer 2006;6:98.

Kim HJ, McDermott PA, Barsevick AM. Comparison of groups with different

patterns of symptom cluster intensity across the breast cancer treatment

Berger AM, Parker KP, Young-McCaughan S, Mallory GA, Barsevick AM,

Beck SL, et al. Sleep/wake disturbances in people with cancer and their

Ancoli-Israel S, Liu L, Marler MR, Parker BA, Jones V, Sadler GR, et al. Fatigue,

sleep, and circadian rhythms prior to chemotherapy for breast cancer. Support

Denieffe S, Cowman S, Gooney M. Symptoms, clusters and quality of life prior

Liu L, Risling M, Neikrug A, Fiorentino L, Natarajan L, Faerman M, et al. Fa-

tigue and circadian activity rhythms in breast cancer patients before and after

Buysse DJ, Ancoli-Israel S, Edinger JD, Lichstein KL, Morin CM. Recommen-

dations for a standard research assessment of insomnia. Sleep 2006;29(9):

1155–73.

Decreased health-related quality of life in women with breast cancer is

Dhruva A, Paul SM, Cooper BA, Lee K, West C, Aouizerat BE, et al. A longitu-

dinal study of measures of objective and subjective sleep disturbance

in patients with breast cancer before, during, and after radiation therapy.

and sleep quality are associated with changes in inflammatory markers in

breast cancer patients undergoing chemotherapy. Brain Behav Immun

Liu L, Risling M, Natarajan L, Fiorentino L, Mills PJ, Dimsdale JE, et al. The

longitudinal relationship between fatigue and sleep in breast cancer patients

Taylor TR, Huntsley ED, Makambi K, Sween J, Adams-Campbell LL, Frederick

W, et al. Understanding sleep disturbances in African-American breast

Mosher CE, Duhamel KN. An examination of distress, sleep, and fatigue in

Rumble ME, Keefe FJ, Edgick G, Marcom PK, Shaw HS. Contribution of

cancer symptoms, dysfunctional sleep related thoughts, and sleep

inhibitory behaviors to the insomnia process in breast cancer survivors: a

Dodd MJ, Cho MH, Cooper BA, Maikowski C. The effect of symptom clusters

on functional status and quality of life in women with breast cancer. Eur J

patients have progressively impaired sleep–wake activity rhythms during

Psychosocial correlates of sleep quality and architecture in women with

Alvarens J, Meyer FL, Granoff DL, Lundy A. The effect of EEG feedback on

reducing postcancer cognitive impairment. Integr Cancer Ther 2013;12(6):

475–87.

Risling MB, Liu L, Natarajan L, He F, Ancoli-Israel S. Relationship of meno-

pausal status and climacteric symptoms to sleep in women undergoing

Martin MA, Meyricker R, O’Neill T, Roberts S. Mastectomy or breast conserving

surgery? Factors affecting type of surgical treatment for breast cancer—a

terns and predictors of breast cancer chemotherapy use in Kaiser Permanente

247–60.

comorbidity in postmenopausal breast cancer patients aged 55 years and

Wolkove N, Elkholy O, Bialtz M, Palaywew M. Sleep and aging: 1. Sleep dis-

orders commonly found in older people. CMAJ 2007;176(9):1299–304.

van Laarhoven HW, Laven JS, Themmen AP, Beex LV, Sweep CG, et al. Menopausal

status and adjuvant hormonal therapy for breast cancer patients: a practi-

Progress and promise: highlights of the international expert consensus on the

Berger AM, Treat Marunuda HA, Agrawal S. Influence of menopausal status on

sleep and hot flashes throughout breast cancer adjuvant chemotherapy.

Bradley CJ, Given CW, Roberts C. Race, socioeconomic status, and breast

Anders M, Breckenkamp J, Bliettner M, Schlehofer B, Berg-Beckhoff G. Asso-

ciation between socioeconomic factors and sleep quality in an urban

population-based sample in Germany. Eur J Public Health 2013 Nov 26 [Epub

ahead of print].

Please cite this article in press as: Costa AR, et al., Impact of breast cancer treatments on sleep disturbances – A systematic review, The Breast (2014), http://dx.doi.org/10.1016/j.breast.2014.09.003