An improved linear model for rotors subjected to dissipative annular flows

M. Moreira
Escola Superior de Tecnologia de Setúbal do IPS, Portugal

J. Antunes
Instituto Tecnológico e Nuclear, Sacavém, Portugal

H. Pina
Instituto Superior Técnico, Lisboa, Portugal

ABSTRACT: In a previous paper, Antunes, Axisa and co-workers developed a linearized model for the dynamic of rotors under moderate fluid confinement, based on classical perturbation analysis covering two different cases: (i) dissipative motions of a centered rotor, (ii) motions of an eccentric rotor for a frictionless flow. Following the same procedures and assumptions, we derive here an improved model to cover the more general case of a dissipative linearized motion of an eccentric rotor. Besides the natural position variables, a new flow variable, which can be physically interpreted as the fluctuating term of average tangential velocity, was introduced, yielding an additional eigenvalue in the linear analysis. The new variable introduced, coupled with the rotor motions, is unavoidable when frictional effects are not neglected and yield a richer modal behavior which can be related with delay effects of the flow responses to the abovementioned rotor motions. Because system dynamics are strongly dependent on actual rotor eccentricity, the validity of this model (or other linear model) is dependent on an adequate estimation of this parameter.

1 INTRODUCTION

In a previous paper, Antunes et al. (1996), developed a linearized model for the dynamic of rotors under moderate fluid confinement, based on classical perturbation analysis, covering two different cases:

1. Dissipative linearized motions of a centered rotor;

2. Linearized motions of an eccentric rotor for a frictionless flow.

This work showed, in particular, that system dynamics are quite sensitive to eccentricity and dissipative effects. Indeed, for moderate or high values of the rotor eccentricity, the system become unstable by divergence—at spinning velocities much lower than those for which the concentric rotors flutter. Quantitative differences in the dynamic behavior are controlled by the friction-dependent flow terms.

Following the same procedures and assumptions, we derive here an improved model to cover the more general case of a dissipative linearized motion of an eccentric rotor, whose study presents some further difficulties.

In this general situation, which was only previously covered in a crude way, the coupling between an auxiliary co-rotating flow variable and the rotor motions are introduced and yield an additional eigenvalue in the linear analysis.

2 FLOW FORMULATION

Consider the geometry of the fluid annulus represented in Figure 1, where θ and t are respectively the azimuth and time, R is the shaft radius and u(θ, t) is the gap-averaged tangential flow velocity. The annular gap depth h(θ, t) is very well approximated by

\[h(\theta, t) = H - (X_0 + X(t)) \cos \theta - Y(t) \sin \theta \]

(1)

where H is the average annular gap and X_0 is some initial static eccentricity. Note that one can always choose an adequate orientation of coordinate axis to express the initial static eccentricity by X_0.

The following simplifying assumptions will be adopted concerning the flow field:
flow velocity \(u(\theta, t) \) and the pressure field \(p(\theta, t) \) into a steady term, depending on the annulus eccentricity, and a small fluctuating term, dependent on the rotor vibratory motion

\[
h(\theta, t) = h_0(\theta) + h_1(\theta, t), \quad (6)
\]

\[
u(\theta, t) = \nu_0(\theta) + \nu_1(\theta, t), \quad (7)
\]

\[
p(\theta, t) = p_0(\theta) + p_1(\theta, t). \quad (8)
\]

Replacing \(h(\theta, t), u(\theta, t) \) and \(p(\theta, t) \) in (2), (3) and (5), by (6), (7) and (8), two sets of differential equations are obtained:

1. zero-order nonlinear flow equations, describing the steady flow field;
2. first-order linearized equations, describing the fluctuating flow, which apply to small vibratory motions about the static position.

In the following we will be interested, in particular, in the fluctuating linearized forms of the dynamic flow forces

\[
\begin{aligned}
\frac{F_x(t)}{L} &= -R \int_0^{2\pi} p_1(\theta, t) \cos \theta d\theta, \\
\frac{F_y(t)}{L} &= -R \int_0^{2\pi} p_1(\theta, t) \sin \theta d\theta,
\end{aligned} \quad (9)
\]

where \(L \) is the immersed length of the rotor. Equivalently, by an integration by parts, one can express equations (9) in a more convenient way as

\[
\begin{aligned}
\frac{F_x(t)}{L} &= R \int_0^{2\pi} \frac{\partial p_1(\theta, t)}{\partial \theta} \sin \theta d\theta, \\
\frac{F_y(t)}{L} &= -R \int_0^{2\pi} \frac{\partial p_1(\theta, t)}{\partial \theta} \cos \theta d\theta.
\end{aligned} \quad (10)
\]

3 SOLUTION OF THE FLOW EQUATIONS

3.1 Analysis of the steady flow

From the zero-order flow equations (see, Antunes et al. 1996) one can obtain the following steady parameters needed later to describe the fluctuating flow:

\[
h_0(\theta) = H (1 - \varepsilon \cos \theta), \quad (11)
\]

where \(\varepsilon = \frac{X_0}{H} \) is the reduced initial static eccentricity,

\[
u_0(\theta) = K\Omega R \frac{1}{1 - \varepsilon \cos \theta}, \quad (12)
\]

with \(K = \frac{1}{2} (1 - \varepsilon^2) \) and finally,

\[
\frac{\partial p_0(\theta)}{\partial \theta} = (\Omega R)^2 \rho \left\{ A_1 \frac{\partial F_{\theta\theta}(\theta, \theta)}{\partial \theta} + A_2 \frac{\partial F_{\theta\phi}(\theta, \theta)}{\partial \theta} + A_3 \frac{\partial F_{\phi\phi}(\theta, \theta)}{\partial \theta} \right\} \quad (13)
\]
In the last equation,

\[A_1 = -\frac{1}{2} K^2, \quad (14) \]

\[A_2 = -K f \varepsilon \frac{1}{(1 - \varepsilon^2)^\delta}, \quad (15) \]

\[A_3 = K \varepsilon^2 f \frac{1}{(1 - \varepsilon^2)^\delta} = -A_2 \varepsilon, \quad (16) \]

with \(\delta = \frac{R}{h} \) and

\[F_{ij}^k (\varepsilon, \theta) = \frac{(\sin \theta)^i (\cos \theta)^j}{(1 - \varepsilon \cos \theta)^k}. \quad (17) \]

3.2 Analysis of the fluctuating flow

The linearized first-order equations are formulated as

\[\frac{\partial h_1}{\partial t} + \frac{\partial}{\partial \theta} \left(h_0 u_1 + u_0 h_1 \right) = 0, \quad (18) \]

\[-\frac{\partial \rho_1}{\partial \theta} = \frac{1}{h_0} \frac{\partial h_0}{\partial \theta} h_1 + \rho (u_0 \frac{\partial h_0}{\partial \theta} + \rho \frac{\partial u_1}{\partial \theta}) \]

\[+ 2 \rho \frac{\partial u_0}{\partial \theta} h_0 u_1 + \rho h_0 \frac{\partial u_1}{\partial \theta} + 2 \rho \frac{\partial h_0}{\partial \theta} u_1 \]

\[+ 2 \rho \frac{\partial h_0}{\partial \theta} u_0 h_1 + 2 \rho u_0 \frac{\partial h_0}{\partial \theta} + \rho f \Omega R^2 \frac{\partial u_1}{\partial \theta}, \quad (19) \]

where

\[h_0 = -X \cos \theta - Y \sin \theta. \quad (20) \]

From (11) and (12) one can solve (18) in order to obtain

\[u_1 (\theta, t) = \frac{K \Omega}{\delta (1 - \varepsilon \cos \theta)^2} X + \frac{K \Omega}{\delta (1 - \varepsilon \cos \theta)^2} Y \]

\[+ \frac{\sin \theta}{1 - \varepsilon \cos \theta} \dot{X} - \frac{\cos \theta}{1 - \varepsilon \cos \theta} \dot{Y} \]

\[+ \frac{C (t)}{(1 - \varepsilon \cos \theta)}, \quad (21) \]

where \(C (t) \) is an integration “constant” related to the co-rotating flow.

3.3 Resultant fluctuating fluid forces

Considering equation (19) and with the knowledge of equations (11), (12), (13), (20) and (21), one can deduce by integration,

\[f_X = \frac{F_X (t)}{L} = -R \int_0^{2\pi} \frac{\partial \rho_1 (\theta, t)}{\partial \theta} \sin \theta d\theta \quad (22) \]

\[= M_{XX} \ddot{X} + C_{XX} \dot{X} + C_{XY} \dot{Y} \]

\[+ K_{XX} X + K_{XY} Y + K_{XC} C, \]

\[f_Y = \frac{F_Y (t)}{L} = R \int_0^{2\pi} \frac{\partial \rho_1 (\theta, t)}{\partial \theta} \cos \theta d\theta \quad (23) \]

\[= M_{YY} \ddot{Y} + C_{YY} \dot{X} + C_{YC} \dot{Y} + C_{XY} \dot{X} + K_{YY} Y + K_{YC} C, \]

\[f_C = R \int_0^{2\pi} \frac{\partial \rho_1 (\theta, t)}{\partial \theta} d\theta = 0 \quad (24) \]

\[= M_{CY} \ddot{Y} + C_{CX} \dot{X} + C_{CY} \dot{Y} + C_{CC} \dot{C} + K_{CX} X + K_{CY} Y + K_{CC} C. \]

The inertial, velocity and displacement coupling factors are presented in Appendix A as a function of

\[C_k^l (\varepsilon) = \int_0^{2\pi} \frac{(\sin \theta)^l (\cos \theta)^j}{(1 - \varepsilon \cos \theta)^k} d\theta, \quad (25) \]

which are listed in Appendix B.

Observe that the dynamic of the system depends on \(X (t), Y (t) \) and \(C (t) \). This explains why we need three equations (22), (23) and (24) to characterize \(f_X \) and \(f_Y \) which are the focus of our interest. However, in two particular cases (see, Antunes et al. 1996) it is possible to characterize \(f_X \) and \(f_Y \) with only two equations: (i) dissipative linearized motions of a centered rotor; (ii) linearized motions of an eccentric rotor for a frictionless flow. In these situations one can eliminate references to the variable \(C (t) \) and its derivative in equations (22) and (23).

3.4 Physical meaning of \(C (t) \)

Integrating each member of the linearized form of the flow rate

\[\Phi (t) = \dot{h}_0 (\theta) \quad (26) \]

\[+ h_1 (\theta, t) u_0 (\theta) + h_0 (\theta) u_1 (\theta, t), \]

in \([0, 2\pi]\), one can obtain

\[\Phi (t) = H K \Omega R + HC (t) \]

that is,

\[\dot{\bar{u}} (t) = C_0 + C (t) \]

where \(\bar{u} (t) = \Phi (t) \) is the average tangential flow velocity and \(C_0 = K \Omega R \) is the correspondent zero order term. Clearly, \(C (t) \) is the first order fluctuating term of the average tangential flow velocity.
4 ANALYSIS OF THE COUPLED SYSTEM

4.1 Adopted formalism

Let \(f^X_X \) and \(f^Y_Y \) be the structural forces per unit length

\[
\begin{align*}
 f^X_X &= M^X \ddot{X} + C^X \dot{X} + K^X X, \quad (27) \\
 f^Y_Y &= M^Y \ddot{Y} + C^Y \dot{Y} + K^Y Y, \quad (28)
\end{align*}
\]

where and \(M^X, C^X \) and \(K^X \) stand respectively for the simple rigid rotor mass, the flexible isotropic rotor fixture and the corresponding stiffness, per unit length. The study of the phenomena induced by the co-rotating flow can be made considering the following complete set of rotodynamic equations

\[
\begin{align*}
 f^X_X + f^X_X &= (M_{XX} + M^X) \ddot{X} \quad (29) \\
 &+ (C_{XX} + C^X) \dot{X} + C_{XY} \dot{Y} \\
 &+ (K_{XX} + K^X) X + K_{XY} Y + K_{XC} C, \\
 f^Y_Y + f^Y_Y &= (M_{YY} + M^Y) \ddot{Y} + C_{XY} \dot{X} \quad (30) \\
 &+ (C_{YY} + C^Y) \dot{Y} + C_{YC} \dot{C} \\
 &+ K_{XY} X + (K_{XY} + K^Y) Y + K_{YC} C, \\
 0 &= M_{CXY} \dot{Y} + C_{CX} \dot{X} \quad (31) \\
 &+ C_{CY} \dot{Y} + C_{CC} \dot{C} \\
 &+ K_{CX} X + K_{CY} Y + K_{CC} C.
\end{align*}
\]

Letting \(Z = \dot{X} \) and \(W = \dot{Y} \) one can study the modal behavior of the system as a function of \(\varepsilon \) and \(\Omega \), solving the complex eigenvalue \(\lambda_n = \sigma_n + i\nu_n \) and complex eigenvector \(\{ \Phi_n \} \) problems, of an equivalent set of five first order differential equations.

From each eigenvalue \(\lambda_n = \sigma_n + i\nu_n \), the corresponding reduced modal frequency and reduced modal damping can be computed as \(\omega_n = \frac{\sigma_n}{\nu_n} \) and \(\xi_n = \frac{\sigma_n}{\nu_n^2} \), where \(\omega_n \) is the structural \textit{in vacuum} radial frequency.

0, 1 or 2 complex conjugate pairs of eigenvalues (and eigenvectors) would be expected in the complete set of 5 eigenvalues (and eigenvectors) of the problem. Observe that one of the eigenvalues must be always real.

4.2 Alternative formalism

Note that in the preceding analysis we deal with a new variable, \(C(t) \). However, admitting a solution in the form

\[
\begin{bmatrix}
X_0 \\
Y_0 \\
C_0
\end{bmatrix} e^{Ax},
\]

and substituting it in the homogeneous form of equations (29), (30) and (31) one can deduce after eliminating \(C_0 \)

\[
\{ \lambda^2 M + \lambda C + K \} \begin{bmatrix}
X_0 \\
Y_0
\end{bmatrix} = \begin{bmatrix}
0 \\
0
\end{bmatrix} \quad (32)
\]

where

\[
M = \begin{bmatrix}
M_{XX} + M^X & -M_{CX}K_{XC} \\
-M_{CY}K_{YC} & M_{YY} + M^Y
\end{bmatrix},
\]

\[
C = \begin{bmatrix}
C_{XX} + C^X & C_{XY} \\
-K_{CY}C_{YX} & C_{YY} + C^Y
\end{bmatrix},
\]

\[
K = \begin{bmatrix}
K_{XY} + K^X & K_{XX}K_{XC} \\
-K_{YX} & K_{YY} + K^Y
\end{bmatrix},
\]

and \(D = \lambda C_{CC} + K_{CC} \).

Observe that all the three matrices obtained, \(M, C \) and \(K \), depend on \(\lambda \). Thus to solve the new generalized eigenvalue problem (32), and find the modal properties of the system, it is necessary to apply an iterative method.

This dependence can be interpreted as a delay in the response of the dynamic system to an excitation, in comparison to the correspondent response if the flow were non-dissipative, as can be found in a similar context in Porcher (1994).

As a matter of fact, if the flow is non-dissipative \((\beta = 0) \) the matrices in equation (32) can be made independent of \(\lambda \). In this case (if the flow is non-dissipative), one can deduce

\[
\{ \lambda^2 N_1 + \lambda^3 N_2 + \lambda N_3 + N_4 \} \begin{bmatrix}
X_0 \\
Y_0
\end{bmatrix} = \begin{bmatrix}
0 \\
0
\end{bmatrix} \quad (33)
\]

where

\[
N_1 = \begin{bmatrix}
(M_{XX} + M^X) & 0 \\
0 & (M_{YY} + M^Y)
\end{bmatrix},
\]

\[
N_2 = \begin{bmatrix}
-M_{CX}K_{XC} & 0 \\
0 & K_{YY}C_{YX}
\end{bmatrix},
\]

\[
N_3 = \begin{bmatrix}
C_{XX} + C^X & 0 \\
0 & C_{YY} + C^Y
\end{bmatrix},
\]

\[
N_4 = \begin{bmatrix}
K_{XY} + K^X & 0 \\
0 & K_{YY} + K^Y
\end{bmatrix},
\]

770
After some manipulation, one can deduce the forced solution of equation (36)

\[X_{\text{dissipative}}(t) = \] (38)

\[= \frac{(d + \zeta)e^{\lambda_P t}}{(a\lambda_P^3 + b\lambda_P^2 + c\lambda_P) + \alpha\lambda_P^2 + \beta\lambda_P + \eta} \]

where

\[a = (M_{XX} + M''), \]
\[b = (C_{XX} + C''), \]
\[c = \left[(K_{XX} + K'') - \frac{K_{XC}C_{CX}}{C_{CC}} \right], \]
\[d = F_0\lambda_P, \]
\[\alpha = \frac{(M_{XX} + M'')K_{CC}}{C_{CC}}, \]
\[\beta = \frac{(C_{XX} + C'')K_{CC}}{C_{CC}}, \]
\[\eta = \left[(K_{XX} + K'') \frac{K_{CC}}{C_{CC}} - \frac{K_{XC}K_{CX}}{C_{CC}} \right], \]
\[\zeta = F_0 \frac{K_{CC}}{C_{CC}}. \]

2) Non-dissipative planar case

If \(f = 0 \), then \(K_{CX} = K_{CC} = 0 \) and the solution (38), can be simplified into

\[X_{\text{non-dissipative}}(t) = \frac{d}{(a\lambda_P^3 + b\lambda_P^2 + c\lambda_P)} e^{\lambda_P t}. \] (39)

One can identify a delay \(\phi \) between responses (38) and (39) which we can compute as

\[\phi = \arg \left(\frac{X_{\text{non-dissipative}}(t)}{X_{\text{dissipative}}(t)} \right) \]

\[= \arg \left(1 + \frac{(a\lambda_P^3 + \beta\lambda_P + \eta)}{(a\lambda_P^3 + b\lambda_P^2 + c\lambda_P)} \right). \]

Observe that \(\alpha, \beta \) and \(\eta \) are zero, whenever \(f = 0 \).
5 NUMERICAL APPLICATIONS

As mentioned before in the eigenvalue analysis of the system correspondent to the differential equations from (29) to (31), we would expect to find 0, 1 or 2 complex conjugate pairs of eigenvalues (and eigenvectors) of the problem. This means that 5, 3 or 1 of the complete set of 5 eigenvalues will be real, respectively. Therefore, numerical results presented here do account for this fact.

Observe that each conjugate pair of complex eigenvalues/eigenvectors forms a mode as do each unpaired of the remaining real eigenvalues/eigenvectors. These modes can be represented by the corresponding frequency (imaginary part of the eigenvalue) and damping (real part of the same eigenvalue) which depend on spinning velocity. Zero different frequency modes can be additionally characterized by a well defined forward or backward whirl. The computed modes are identified in the plots using the following codes: F and B, respectively, for the forward and backward whirling modes and Z for the zero-frequency mode.

The reduced modal frequencies \(\bar{\omega}_n = \frac{\omega_n}{\bar{\Omega}} \) are shown as a function of the reduced rotor velocity \(\bar{\Omega} = \frac{\Omega}{\bar{\Omega}} \), as well the corresponding damping coefficient \(\bar{d}_n = \frac{d_n}{\bar{\Omega}} \).

In order to be able to compare present results with previous work (Antunes et al. 1996), we have assumed a mass ratio \(\gamma = \frac{M}{M_0} = 2 \), a reduced gap of \(\delta = H/R = 0.1 \) and we have neglected all dissipative structural effects in all numerical simulations except the one in which we use an estimate of the actual eccentricity at each spinning velocity.

5.1 Some cases accounted for by previous theory

In Figures 2 to 5 we present some particular cases which have in common the fact they are dissipative linearized motions of a centered rotor or linearized motions of an eccentric rotor for a frictionless flow. That is, those cases are completely accounted for by the previous linear theory developed in Antunes et al. (1996).

In fact, the numerical results presented in these figures show the same forward and backward whirling modes represented in Figure 11 in Antunes et al. (1996) and, of course, one additionally new real mode (a zero frequency mode).

5.2 The dissipative-eccentric case

In Figure 6 the more general case of a dissipative linearized motion of an eccentric rotor is considered.

The numerical results presented are strongly different from the analogous numerical results computed in Antunes et al. (1996), and shown here in Figure 7. At that time this case was only treated in a crude way and the analysis was made under a natural superposition assumption performed over the developed linearized models.

Comparing Figures 6 and 7 we can observe that the modal damping predicted by the new linear model exhibits significant differences which stress the importance of the new improved model.

One can note, for example, that in this configuration the improved linear model predicts that the system will become unstable, due to flutter, at a very early stage.
5.3 Using the actual eccentricity

Numerical applications shown in this subsection are based on the experiments (using water) performed by Grunenwald et al. (1996) and in correspondent nonlinear simulations (Moreira et al. 2000a). In experiments and in nonlinear simulations this configuration was labeled "eccentric configuration B". The significant parameters used were tabulated in these papers. Dissipative structural effects were now considered and the modal frequency and damping, presented, are not in a reduced form.

System dynamics are strongly dependent on rotor eccentricity. Moreover, the developed linear theory based on first-order linearized equations, describing the fluctuating flow, only applies to small vibratory motions about the static position of the rotor. Those facts, in the presence of a significant rotor drift (mostly due to a Bernoulli effect) as a function of the spinning velocity (see for instance, Grunenwald et al. 1996), motivate the usage of the actual eccentricity (or, at least, an estimate of it) in the eigenvalue analysis.
In Figures 8 and 9 one can see respectively the eigenvalue analysis using the same initial static eccentricity (for each spinning velocity) and an estimate of the drift. The actual eccentricity for each spinning velocity was estimated using a spline curve linking nonlinear numerical results of eccentricity at certain regimes which are displayed in Figure 10.

Differences exhibited justify this approach. Unfortunately there is no way to easily obtain an estimate of the drift.

Figure 8: Rotor modes as a function of the spinning velocity using the same static eccentricity at each spinning velocity (ε = 0.6; "eccentric configuration B" in Grunenwald et al. 1996 & Moreira et al. 2000a).

Figure 9: Rotor modes as a function of the spinning velocity using an estimate of the actual eccentricity ("eccentric configuration B" in Grunenwald et al. 1996 & Moreira et al. 2000a).

Figure 10: Nonlinear estimations of the rotor drift ("eccentric configuration B" in Moreira et al. 2000a).

6 CONCLUSIONS

In this paper an improved linear model for rotors subjected to dissipative annular flows based on classical perturbation analysis was developed.

Besides the natural position variables \(X = X(t) \) and \(Y = Y(t) \) of the problem, a new flow variable \(C = C(t) \), which can be physically interpreted as the fluctuating term of average tangential velocity, was introduced, yielding an additional eigenvalue in the linear analysis (whenever boundary pressure values are controlled by dissipative effects an additional flow variable have to be introduced).

This model is an extension of the one developed in Antunes et al. (1996) and shows identical predictions in cases completely accounted for by the old one, namely: (i) dissipative linearized motions of a centered rotor; (ii) linearized motions of an eccentric rotor for a frictionless flow. However, the new model can also deal with dissipative motions of eccentric rotors.

The new variable introduced \(C = C(t) \), coupled with \(X = X(t) \) and \(Y = Y(t) \), is unavoidable when frictional effects are not neglected and yield a richer modal behavior which can be related with delay effects of the flow responses to rotor motions.

Because system dynamics are strongly dependent on actual rotor eccentricity, the validity of this model (or other linear model) is dependent on an adequate estimation of this parameter.

Experimental work is currently being prepared to further assert the validity of the present linear model (Moreira et al. 2000b).

REFERENCES

NOMENCLATURE

- $C(t)$: new flow variable.
- C^1: structural damping per unit length.
- τ_1, τ_2: reduced modal damping $\tau_1 = \frac{\sigma}{\omega}$.
- f, f_1, f_2: friction coefficients.
- f^*: structural in vacuo frequency.
- f_X, f_Y, f_C: fluidelastic forces per unit length.
- f_X^*, f_Y^*, f_C^*: structural forces per unit length.
- h_0, h_1: steady and fluctuating local gap.
- H: average annular gap.
- K^*: structural stiffness per unit length.
- L: rotor length.
- M_a: added mass per unit length, $M_a = \frac{\pi R^2 e}{\tan\gamma}$.
- M^*: modal mass (with no fluid) per unit length.
- $p(\theta,t)$: gap averaged pressure.
- p_0, p_1: steady and fluctuating gap averaged pressure.
- R: rotor radius.
- t: time.
- $u(\theta,t)$: tangential flow velocity.
- u_0, u_1: steady and fluctuating tangential flow velocity.
- $X(t), Y(t)$: rotor motions.
- X_0, Y_0: steady rotor positions.
- γ: mass ratio, $\gamma = \frac{M^*}{M}$.
- δ: reduced gap: H/R.
- ε: reduced initial static eccentricity, $\varepsilon = \frac{X_0}{H}$.
- λ_n: eigenvalue of the flow-structure system.
- θ: azimuthal angle.
- ν_n: imaginary part of the eigenvalue λ_n.
- ρ: fluid density.
- σ_n: real part of the eigenvalue λ_n.
- τ_1, τ_2: shear stresses at the rotor and stator walls.
- ω_n: circular frequency.
- ω^*: reduced modal frequency, $\omega^*_n = \frac{\sigma}{\omega}$.
- ϕ: structural in vacuo radian frequency.
- ϕ^*: delay.
- Ω: spinning velocity.
- Ω^*: reduced rotor velocity $\Omega = \frac{\Omega^*}{\omega}$.

APPENDIX A: COUPLING FACTORS

$M_{XX} = R^2 \rho \frac{1}{G_1^{20}} $ \hspace{1cm} (A1)

$M_{XX} = R^2 \rho \frac{1}{G_1^{20}} $ \hspace{1cm} (A2)

$M_{XX} = R^2 \rho \frac{1}{G_1^{20}} $ \hspace{1cm} (A3)

$C_{XX} = \frac{R^2}{\delta} \frac{f_1^*}{\delta} $ \hspace{1cm} (A4)

$C_{XY} = \frac{R^2}{\delta} 2K \Omega G_3^{20} $ \hspace{1cm} (A5)

$K_{XX} = \frac{R^2}{\delta} K^2 \Omega^2 (G_2^{20} - 2G_3^{20} - \varepsilon G_4^{21}) $ \hspace{1cm} (A6)

$K_{XY} = \frac{R^2}{\delta} K \Omega G_3^{20} \left(\frac{1}{(1-\varepsilon^2)} \left(G_4^{20} + G_4^{22} \right) \right) $ \hspace{1cm} (A7)

$K_{XY} = \frac{R^2}{\delta} K \Omega G_3^{20} \left(\frac{1}{(1-\varepsilon^2)} \left(G_4^{20} + G_4^{22} \right) \right) $ \hspace{1cm} (A8)

$K_{XC} = -2\rho K \Omega R^2 \varepsilon G_3^{20} $ \hspace{1cm} (A9)

$M_{YY} = +R^2 \rho G_1^{20} $ \hspace{1cm} (A10)

$C_{XY} = +R^2 \rho G_1^{20} $ \hspace{1cm} (A11)

$C_{XY} = +R^2 \rho G_1^{20} $ \hspace{1cm} (A12)

$C_{XY} = +R^2 \rho G_1^{20} $ \hspace{1cm} (A13)

$K_{XY} = \frac{R^2}{\delta} f_1^* K \left(\frac{1}{(1-\varepsilon^2)} \left(G_4^{20} + G_4^{22} \right) \right) \left(-\varepsilon G_4^{20} + G_4^{21} \right) $ \hspace{1cm} (A14)

$K_{YY} = \frac{R^2}{\delta} K \Omega G_3^{20} \left(-\varepsilon G_4^{21} + G_3^{20} - 2G_4^{20} \right) $ \hspace{1cm} (A15)

$K_{YC} = -R^2 \rho G_1^{20} $ \hspace{1cm} (A16)

$M_{CY} = +R^2 \rho G_1^{20} $ \hspace{1cm} (A17)

$C_{CC} = -R^2 \rho G_1^{20} $ \hspace{1cm} (A18)

$C_{CX} = \frac{R^2}{\delta} 2K \Omega \left(-G_3^{20} + \varepsilon G_3^{20} \right) $ \hspace{1cm} (A19)

$C_{CY} = \frac{R^2}{\delta} 2K \Omega \left(-G_3^{20} + \varepsilon G_3^{20} \right) $ \hspace{1cm} (A20)

$K_{CX} = \frac{R^2}{\delta} K \Omega G_3^{20} \left(-A_0 \varepsilon (G_1^{20} + G_2^{20}) \right) \left(1 + \varepsilon^2 \right) \left(A_0 G_1^{20} \right) - f_1^* \varepsilon G_1^{20} \right) $ \hspace{1cm} (A21)

$K_{CC} = \frac{R^2}{\delta} K \Omega G_3^{20} \left(\frac{2f_1^* \varepsilon}{\sqrt{(1-\varepsilon^2)}} \right) $ \hspace{1cm} (A22)

$K_{CY} = \frac{R^2}{\delta} K \Omega G_3^{20} \left(-\varepsilon G_4^{20} + G_1^{20} - 2G_4^{20} \right) $ \hspace{1cm} (A23)

$K_{CC} = \frac{R^2}{\delta} K \Omega G_3^{20} \left(-\varepsilon G_4^{20} + G_1^{20} - 2G_4^{20} \right) $ \hspace{1cm} (A24)

APPENDIX B: AZIMUTHAL INTEGRALS

$G_1^{20} = \frac{\pi^2}{\sqrt{(1-\varepsilon^2)}} \quad (B1)$

$G_1^{20} = \frac{2\pi \varepsilon}{\sqrt{(1-\varepsilon^2)}} \quad (B2)$
\[G_{10}^{\phi} = 2\pi \frac{1 - \sqrt{1 - \varepsilon^2}}{\varepsilon^2 \sqrt{1 - \varepsilon^2}} \] (B3)
\[G_{10}^{\mu} = G_{11}^{\mu} = 0 \] (B4)
\[G_{20}^{\psi} = \begin{cases} 2 \pi \frac{1 - \sqrt{1 - \varepsilon^2}}{\varepsilon^2 \sqrt{1 - \varepsilon^2}} & \text{if } 0 < \varepsilon < 1 \\ \pi & \text{if } \varepsilon = 0 \end{cases} \] (B5)
\[G_{20}^{\phi} = \frac{2}{\sqrt{1 - \varepsilon^2} \pi} \] (B6)
\[G_{21}^{\phi} = \begin{cases} \frac{2 \pi (\varepsilon^2 + 2)}{\sqrt{1 - \varepsilon^2} \pi} & \text{if } 0 < \varepsilon < 1 \\ 0 & \text{if } \varepsilon = 0 \end{cases} \] (B7)
\[G_{21}^{\mu} = G_{22}^{\mu} = 0 \] (B8)
\[G_{22}^{\mu} = \begin{cases} \frac{2 \pi \varepsilon^2}{\sqrt{1 - \varepsilon^2} \pi} & \text{if } 0 < \varepsilon < 1 \\ \frac{\varepsilon^2}{\pi} & \text{if } \varepsilon = 0 \end{cases} \] (B9)
\[G_{30}^{\psi} = \begin{cases} \frac{\pi \varepsilon^2}{\sqrt{1 - \varepsilon^2} \pi} & \text{if } 0 < \varepsilon < 1 \\ 2\pi & \text{if } \varepsilon = 0 \end{cases} \] (B10)
\[G_{30}^{\phi} = \frac{2 \pi (1 - \sqrt{1 - \varepsilon^2})}{\varepsilon^2 \sqrt{1 - \varepsilon^2} \pi} \] (B11)
\[G_{31}^{\phi} = \begin{cases} \frac{\pi \varepsilon^2 + 2}{\sqrt{1 - \varepsilon^2} \pi} & \text{if } 0 < \varepsilon < 1 \\ 0 & \text{if } \varepsilon = 0 \end{cases} \] (B12)
\[G_{31}^{\mu} = G_{32}^{\mu} = G_{33}^{\mu} = 0 \] (B13)
\[G_{32}^{\phi} = \begin{cases} \frac{\pi (\varepsilon^2 + 1)}{\sqrt{1 - \varepsilon^2} \pi} & \text{if } 0 < \varepsilon < 1 \\ \pi & \text{if } \varepsilon = 0 \end{cases} \] (B14)
\[G_{40}^{\psi} = \begin{cases} \frac{\pi \varepsilon^2}{\sqrt{1 - \varepsilon^2} \pi} & \text{if } 0 < \varepsilon < 1 \\ \pi & \text{if } \varepsilon = 0 \end{cases} \] (B15)
\[G_{40}^{\phi} = \frac{2 \pi (\varepsilon^2 + 2)}{\sqrt{1 - \varepsilon^2} \pi} \] (B16)
\[G_{40}^{\mu} = G_{41}^{\mu} = G_{42}^{\mu} = G_{43}^{\mu} = 0 \] (B17)
\[G_{41}^{\phi} = \begin{cases} \frac{\pi (\varepsilon^2 + 2)}{\sqrt{1 - \varepsilon^2} \pi} & \text{if } 0 < \varepsilon < 1 \\ 0 & \text{if } \varepsilon = 0 \end{cases} \] (B18)
\[G_{41}^{\mu} = G_{42}^{\mu} = \frac{0}{\sqrt{1 - \varepsilon^2} \pi} \] (B19)
\[G_{42}^{\phi} = \begin{cases} \frac{\pi (\varepsilon^2 + 4)}{\sqrt{1 - \varepsilon^2} \pi} & \text{if } 0 < \varepsilon < 1 \\ 0 & \text{if } \varepsilon = 0 \end{cases} \] (B20)
\[G_{42}^{\mu} = G_{43}^{\mu} = \frac{0}{\sqrt{1 - \varepsilon^2} \pi} \] (B21)
\[G_{43}^{\phi} = \begin{cases} \frac{\pi (\varepsilon^2 + 3)^2}{\sqrt{1 - \varepsilon^2} \pi} & \text{if } 0 < \varepsilon < 1 \\ 0 & \text{if } \varepsilon = 0 \end{cases} \] (B22)
\[G_{43}^{\mu} = G_{44}^{\mu} = \frac{0}{\sqrt{1 - \varepsilon^2} \pi} \] (B23)
FROM THE SAME PUBLISHER

Bearman, P. W. (ed.) 90 5410 547 X
1995, 25 cm. 688 pp., EUR 148.50 / $175.00 / £105
Flow-induced vibration of tube arrays to cross flow & axial flow, both single phase & two phase, vortex shedding from bluff cylinders, the application of CFD to solve flow-induced vibration problems, vibration of hydraulic structures, valves & piping systems, wind-induced vibration of buildings & structures & vibration of offshore structures & underwater cables. Editor: Imperial College of Science, London.

Naudascher, Eduard & Donald Rockwell 90 5410 131 8
Flow-induced vibrations: An engineering guide (IAHR Hydraulic structures design manual 7)
1994, 25 cm. 432 pp., EUR 115.50 / $136.00 / £81
Vibration phenomena occurring in a variety of engineering fields in terms of basic mechanisms that allow identification of all possible sources of excitation in a given system. Included are recent research results as well as practical case studies on flow-induced vibrations and their attenuation. Contents: Vibration of various configurations of bodies with external and internal flows; vibration of fluid masses; & coupled vibrations of bodies & fluids in complex systems. Possible origins of vibrations involving fluid instabilities, incident turbulence, & body motion. Subject index & reference list.

Kratzig, W. B. & H.-J. Niemann (eds.) 90 5410 624 7
Dynamics of civil engineering structures
1996, 25 cm. 648 pp., EUR 137.50 / $162.00 / £97
In civil engineering, dynamic excitations of structures were long placed beside the main attention. Probably this was due to the tradition of constructing mainly heavy weight buildings in which the dead-load dominated all other life-loads. This changed dramatically some 30 years ago, when engineering structures became more lightweight and aspects of safety and durability rose in importance. Since then dynamic effects on building structures caused by seismicity, wind impact, vibrations due to machines and traffic etc. have become increasingly important for their design, for their safety and durability. The Research Center on Structural Dynamics at the Ruhr University, Bochum has carried out substantial work in many fields mentioned. It has investigated dynamical behaviour of building materials and components in order to deepen the insights into this basic area. It has also intensively pushed forward the computational methods in dynamics and finally concentrated on interaction problems of structures with their environment. The volume presented summarizes a modern view on structural dynamics originating from the work of nearly all members of the Research Center including some guests.

Bradford, M. A., R. Q. Bridge & S.J. Foster (eds) 90 5809 107 4
Mechanics of structures and materials - Proceedings of the 16th Australasian conference, Sydney, NSW, Australia, 8-10 December 1999
1999, 21 cm. 780 pp., EUR 105.00 / $110.00 / £70
The papers represent recent findings, with a focus on Australasian work, in the broad area of structural mechanics. Contributions from North America, Japan, Britain, Asia and South East Asia are also included in the proceedings. The breadth of the scope of the papers, as well as the regional nature of the research, will ensure that this volume is a reference for recent developments in both research and application of new technologies in the mechanics of structures and materials. Topics: Keynote papers; Computational and fracture mechanics; Reinforced and prestressed concrete structures; Advances in design and construction methodologies; Steel structures; Composite structures; Building and construction products; Design codes; Environmental loadings; Composites engineering and new materials; Dynamic analyses of structures; Structural analysis and stability; Foundation engineering; Optimisation and reliability.

Meskouris, K. (ed.) 90 5809 044 2
1999, 25 cm. 466 pp., EUR 90.00 / $105.00 / £63
51 papers which succinctly describe the state of the art in the areas: Computational models and techniques; Structural dynamics; Innovative construction materials; Damage simulation and Durability. The papers show the application of innovative methods to practical situations. The spectrum of the single papers ranges from experimental and theoretical investigations of structures subject to dynamic loading (wind, earthquake, church bell ringing, explosions), FE analyses of non-linear structural behaviour, innovative design and analysis concepts for reinforced concrete and steel structures and safety assessment methods with explicit damage evaluation to complex building/foundation models, structural glass and textile span investigations for existing historical steel bridges and optimization aspects.

Mukhopadhyay, Madhujit 90 5410 728 6
Vibrations, dynamics and structural systems - Second edition
2000, 25 cm. c.600 pp., EUR 95.00 / $95.00 / £63
Student edition: 90 5809 221 6, EUR 45.00 / $45.00 / £30
Textbook with exercises at the end of each chapter. Contents: Introduction; Free vibration of single degree of freedom system; Forced vibration of single degree of freedom system; Numerical methods in structural analysis: Applied to SDF systems; Vibration of two degrees of freedom system; Free vibration of multiple degrees of freedom system; Free vibration analysis of continuous systems; Forced vibration of continuous systems; Dynamic direct stiffness method; Vibration of ship and aircraft as a beam; Finite element method in vibration analysis; Finite difference method for the vibration analysis of beams and plates; Nonlinear vibration; Random vibration; Computer programme in vibration analysis; The stiffness matrix; Table of spring stiffness; Index.

All books available from your bookseller or directly from the publisher:
A.A. Balkema Publishers, P. O. Box 1675, NL-3000 BR Rotterdam, Netherlands
(Fax: +31-10-413-5947; Tel: +31-10-4145822; E-mail: sales@balkema)
For USA & Canada: A.A. Balkema Publishers, 2252 Ridge Road, Brookfield, VT 05036-9704
(Fax: 802-276-3837; Tel: 802-276-3162; E-mail: info@ashgate.com)