Towards technology stewardship: tools for encouraging student engagement

Pedro Neto
Escola Superior de Tecnologia do Barreiro, Setubal Polytechnic Institute, Barreiro, Portugal
pedro.neto@estbarreiro.ips.pt

Bill Williams
Escola Superior de Tecnologia do Barreiro, Setubal Polytechnic Institute, Barreiro, Portugal
CEGIST Research Centre, Portugal
bill.williams@estbarreiro.ips.pt

Isabel Carvalho
Instituto Superior de Engenharia de Lisboa, Lisbon Polytechnic Institute, Lisbon, Portugal
icarvalho@dem.isel.ipl.pt

Abstract: Getting more specialist engineering faculty members involved in the practice of high quality engineering education research (EER) has been a recurring concern at conferences and has been addressed in various initiatives over the last decade. We consider the technology stewardship concept proposed by Etienne Wenger et al. to be a fruitful area for engineering educators who have been increasingly faced with decisions relating to IT-based tools arising from a rapid proliferation of IT technology and tools and a growing emphasis on quality assurance in higher education. Choices need to be made in areas of technology selection, design and adaptation and as these decisions require competences from both engineering and pedagogical domains, the engineering instructor needs to be able to draw upon both these areas of knowledge and in this paper, as part of a pedagogical framework, we set out to illustrate the processes of tool design, adoption and adaptation in the service of teaching and learning from a technology stewardship perspective.

Introduction

Since the reorganisation of Portuguese higher education brought about by the introduction of the Bologna Process in the academic year 2006-07 (DGES) the authors have been working with a variety of technological instruments to enhance learner engagement and promote active learning. In the process a pedagogical framework has been developed and we have found Wenger’s technology stewardship concept (Wenger, White and Smith, 2009) to provide a useful perspective on technology in the service of teaching and learning. Believing that this approach can be useful to other EER practitioners, we present here some examples from our own work as a proof of concept of its relevance in guiding technology decisions.

Research questions

To assist the work of engineering faculty who work with technology to encourage student engagement, the authors set out to see if Wenger’s technology stewardship approach, one originally developed in the field of learning communities, can be usefully applied in the field of EER. The question could thus be formulated: how could the concept of technology stewardship play a useful role to guide technology choice decisions in EER?

Technology Stewardship

With the increasing emphasis on Quality Assurance in European higher education (Quality Assurance and Accountability) and a rapid proliferation of IT technology and tools which make claims to help achieve this, engineering educators here have been increasingly faced with decisions relating to tool
design and selection – issues described by Wenger, White and Smith (2009) as falling within the domain of technology stewardship. Trayner (2007) originally described technology stewards as “those who know both the local context and needs, who know the technology market, and know how to weave together the two” and this definition has been expanded by Wenger, White and Smith (2009) in their recent book Digital Habitats as follows: “Technology stewards are people with enough experience of the workings of a community to understand its technology needs, and enough experience with technology to take leadership in addressing those needs. Stewardship typically includes selecting and configuring technology, as well as supporting its use in the practice of the community”. Many engineering educators may recognize this as describing a growing portion of their professional activity although in the engineering education domain we would also want to include tool design as part of the remit of technology stewards. Since the publication of Digital Habitats in 2009 (Wenger, White and Smith, 2009) the concept of technology stewardship has begun to be applied in a variety of learning communities but we are unaware of work to date in the field of engineering education. Various authors have referred to the dangers of making technology selection decisions which are not grounded on sound pedagogical foundations (Bates and Poole, 2003 and Laurillard, 2009) and the framework we have employed is based on the perspectives espoused by Bates and Poole and by Laurillard. A strength of Wenger’s approach is that he places learning at the centre of the process and an analysis of learning needs as the first step from which subsequent decisions about technology will flow.

In the engineering education context we would characterize technology stewardship as a process in the service of teaching and learning that involves the design, adoption or adaptation of educational technology and the subsequent facilitation of its use and in this paper the authors aim to share our experience with examples of each of these three processes.

Methodology

We adopted an exploratory qualitative methodology as being the most appropriate for this study. Although our approach in this paper is predominantly qualitative in that we aim to show in a global way how the technology stewardship concept can be useful in the EER context, as a proof of concept, we do illustrate with quantitative data obtained from the use of the technology described while we give examples from our own work of how we have approached the adoption, design and adaptation of tools to encourage active learning and student engagement in undergraduate engineering courses.

Technology stewardship in Practice - proof of concept

Three main examples are presented. In the first we consider the selection of online self and peer assessment applications where we consider three options: SPARK PLUS, WebPA and an open source LMS.

Secondly, we describe our experience with the design and development of the Learner Activity Monitoring Matrix (LAMM) used to monitor student activity in the lecture classroom and give examples of how the data obtained from this approach can be used by faculty members and departments aiming to make the traditional lecture class more effective as a learning environment. In a previous conference paper we have compared the LAMM with the VOS and audience response system (clicker) approaches to this type of measurement and characterize our experience in the design research process (Carvalho and Williams, 2009).

Thirdly, we present an example of how an online LMS can be adapted to facilitate student peer voting, describing how this was incorporated into a civil engineering subject over three semesters and present data obtained.

We close with conclusions regarding the usefulness of the technology stewardship concept in EER and indicate planned future research areas.

Student Self and Peer Assessment – technology adoption

The use of collaborative groups in a curriculum unit is a common practice adopted by instructors because of the important competences acquired from the related activities. However, the contribution
of each student within a group cannot always to be assessed. Beside the more traditional activities involving curriculum content, each the student was expected to assess their own and their peers’ performance. SPARKPLUS, an online tool designed to facilitate the use of self and peer assessment developed by the University of Technology Sydney and hosted on their server, was employed for this within the context of collaborative group-work outside and inside the classroom.

A three-stage procedure was applied:
• Stage 1: Group preparation of whole-class presentation – a group of four to five students prepare a short presentation on a topic proposed by the instructor;
• Stage 2: Theme Presentation – the group presents the topic in the classroom;
• Stage 3: Self and Peer Assessment – using the SPARKPLUS application students assess their own contribution and performance and that of their peers in the group.

The development of competences involving judgement skills and peer evaluation is promoted and with these activities students are encouraged to reflect on their own and their peers’ contribution to teamwork and at the end SPARKPLUS calculates two factors: SPA which is a measure of the contribution of each member to the work of the team and SAPA the ratio of a student’s own rating of themselves compared to the average rating of their contribution by their peers. These two factors are available for consultation by individual students and the instructor.

An advantage of this application is that it outputs data in various formats including individual student and group radar diagrams and in Excel format thus facilitating statistical analysis. For example, a study by Beamish, Kizil, Willey and Gardner (2009) at Queensland University suggests that academically stronger students tend to underestimate their own contribution (rate themselves lower than they are rated by their peers) and vice versa.

The application aims to reduce the probability of collusion between group members in evaluating each other by providing rating via a slider rather than simple numerical or Lickert scale and it also facilitates the identification of students aiming to beat the system and allows the instructor to exclude them from the marking process.

Student Self and Peer Assessment – technology adaptation

Another tool with some common purposes, i.e. student peer and self-assessment, was implemented. Although the ideal tool for this part of the process would be a dedicated online application like WebPA or SPARKPLUS, which we have previously used, it was decided to explore the possibility of adapting a commonly installed LMS to achieve the same purpose. This can be achieved by adapting the quiz function found in Moodle 1.0.

A six-stage procedure was applied:
• Stage 1: Student sign-up – this is an optional activity which if completed contributes to the final subject mark;
• Stage 2: Ice breaker task to get familiar with the online interface;
Towards technology stewardship: tools for encouraging student engagement

- Stage 3: Group preparation of a report – a group of four to five students prepare a short report on topics proposed by the instructor;
- Stage 4: Peer revision – a revision of the report is done by a different student group;
- Stage 5: Group preparation of the final version of the report – students prepare the final version of the report after the suggestions made by their peers;
- Stage 6: Self and Peer Assessment – using the online self and peer assessment application students assess their own contribution and performance and that of their peers in the group.

The LMS self and peer assessment application does allow the instructor to export data into Excel but overall the procedure requires a greater time investment than would a dedicated applications like WebPA or SPARKPLUS (Neto, Williams and Carvalho, 2010).

Learner Activity Monitoring Matrix - technology design

Several in-class activities from two online activity banks (Felder and Brent and Paulson and Faust) were adapted. From these lists a few activities were selected to be used in a variety of course contents, namely: In-Class Teams; Think-Pair-Share; Minute paper; Regular uses of students’ names; The "One Minute Paper"; Muddiest (or Clearest) Point; Affective Response; Clarification Pauses; Wait Time; Discussion; show of hands voting; active review sessions, and student revision lists. The implementation of in-class active learning techniques can be monitored using a Learner Activity Monitoring Matrix (LAMM) which we have designed for the purpose. This is a simple semi-quantitative tool that uses in-classroom observation or post-class video observation to monitor the degree of student activity during the implementation of AL techniques in their classes. It also allows an individual instructor or team to focus on the question of learner activity during class contact time and develop efficient techniques to increase it. More detailed information on the use of the LAMM and its use to generate an Activity Index and Participation Parameter for each observed lesson can be found in previous publications (Carvalho and Williams, 2009 and Neto, Williams and Carvalho, 2009).

Table 1 shows an example of evolution the Activity Index (AI) and Participation Parameter (PP) values collected for 22 observed lessons of an individual lecturer who was introducing active learning techniques into her lecture classes (an AI value of 30 corresponds to a lecture where learners are essentially passive listeners throughout the class).

<table>
<thead>
<tr>
<th>Date</th>
<th>PP</th>
<th>AI</th>
</tr>
</thead>
<tbody>
<tr>
<td>06/04/2011</td>
<td>13</td>
<td>33</td>
</tr>
<tr>
<td>07/04/2011</td>
<td>14</td>
<td>33</td>
</tr>
<tr>
<td>08/04/2011</td>
<td>15</td>
<td>33</td>
</tr>
<tr>
<td>09/04/2011</td>
<td>16</td>
<td>33</td>
</tr>
<tr>
<td>10/04/2011</td>
<td>17</td>
<td>33</td>
</tr>
<tr>
<td>11/04/2011</td>
<td>18</td>
<td>33</td>
</tr>
<tr>
<td>12/04/2011</td>
<td>19</td>
<td>33</td>
</tr>
<tr>
<td>13/04/2011</td>
<td>20</td>
<td>33</td>
</tr>
</tbody>
</table>

Table 1: LAMM results for an individual instructor

Overall, the instructor’s perception of increased learner activity and engagement over the period under study is clearly reflected in the semi-quantitative data obtained from the LAMM-registered observations (Neto, Williams and Carvalho, 2009). The use of AL techniques seems to have a favourable contribution to the attendance as shown in previous work (Neto, Williams and Carvalho, 2009). Although these initial results represent a relatively small population, it is interesting to see that they reflect findings from other studies involving Active Learning and Audience Response Systems (clickers) which reported improvements in attendance when student activity in lectures was recorded by clicker responses (although only in cases where this activity contributed to more than 5% of the final grade) (Caldwell, 2007).

Analysing the data obtained from the use of the LAMM in 107 observed lecture classes, Table 2 shows a comparison between the % time engaged in lecturing (i.e. students passively listening) for both AL-oriented and traditional lecturers in our study.
Peer voting procedure using an online LMS – technology adaptation

It was felt that there was a need for additional practice in resolving quantitative technical calculations in a range of contexts as in exams of previous years it was noted that students often had difficulty when confronted with applications of learned procedures in less familiar contexts. Accordingly an Online Learning Management System was used to provide learners with additional practice in critical analysis and allow them more flexible time management.

The survey function commonly found in LMS such as Moodle or Blackboard allows one to increase learner engagement with the material under study by introducing a peer voting process. This is essentially an online application of what Paulson and Faust refer to as Active Review Sessions – “In the traditional class review session the students ask questions and the instructor answers them. Students spend their time copying down answers rather than thinking about the material. In an active review session the instructor poses questions and the students work on them in groups. Then students are asked to show their solutions to the whole group and discuss any differences among solutions proposed”. The online asynchronous implementation has the additional advantage that it allows more time for learner reflection than conventional review.

A three-stage procedure was applied:

- **Stage 1: Individual problem solving** - students were given a statement online and had a week to post a justified comment to that statement. Once students post their answer they can see those of others. The solutions remain online but cannot be altered;
- **Stage 2: Peer Selection** - individual critical analysis - students are allowed a week to vote for the best solution posted;
- **Stage 3: Completion** - the lecturer comments on the winning solution and gives a model answer. A symbolic prize may be awarded to the most successful contribution.

The benefit of this procedure is that it increases student engagement by encouraging them to compare their own solutions to the questions posed by the lecturer with those of their peers. The students’ participation level for stage 1 of a first question achieved a value near of 90% of the maximum number of students attending to class. This aspect reveals an important participation level although a decrease is observed along the semester (as well as class attendance) which is strongly dependent on external factors like tests and assessed assignment deadlines for other curriculum units (Neto, Williams and Carvalho, 2009).

<table>
<thead>
<tr>
<th>Lecturers</th>
<th>% lecture time</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL oriented (n = 92)</td>
<td>62</td>
</tr>
<tr>
<td>Traditional (n = 15)</td>
<td>93</td>
</tr>
</tbody>
</table>

Table 2: LAMM results comparing AL oriented and traditional lecturers
Conclusions

In the work presented here we have mainly aimed to illustrate how we have found this particular conceptual approach to be useful in guiding our own practice. In the contexts presented, the type of framing recommended by proponents of the technology stewardship approach has proved valuable in approaching decisions concerning technology in the service of teaching and learning and we believe it can provide a useful framework for EER practitioners to approach technology decisions in that it stresses the prior definition of learning needs and aims to cultivate a learning community approach among faculty.

Furthermore, we believe an approach based around the design, adoption or adaptation of technology provides a perspective that can prove attractive to engineering specialists not hitherto involved with EER who are likely to be familiar with such decisions in other contexts. However, we are still at the stage of defining the data we should be looking to gather and what might be appropriate strategies to gather it in order to validate the approach.

Broader questions relating to this work that are still in need of clarification

1) Is there a place for this kind of work within EER: should it be categorized as “application” or “advances” rather than “research”, for example?

2) How best to design research to study the usefulness of the technology steward approach in engineering education;

3) How to gather this kind of research data on an appropriate scale within the contexts that many aspiring EER practitioners find themselves worldwide i.e. with little access to significant research funding or to the collaboration of doctoral students in the field.

References

Towards technology stewardship: tools for encouraging student engagement

Neto, P. et al., Towards technology stewardship: tools for encouraging student engagement

Acknowledgements

Financial support has been provided by the Portuguese Fundação para a Ciência e a Tecnologia (FCT) of the Portuguese Ministry of Science and Technology and Higher Education (PTDC / CED / 69529 /2006).

Copyright statement

Copyright © 2011 Pedro Neto, Bill Williams and Isabel Carvalho: The authors assign to the REES organisers and educational non-profit institutions a non-exclusive licence to use this document for personal use and in courses of instruction provided that the article is used in full and this copyright statement is reproduced. The authors also grant a non-exclusive licence to REES to publish this document in full on the World Wide Web (prime sites and mirrors) on CD-ROM and in printed form within the REES 2011 conference proceedings. Any other usage is prohibited without the express permission of the authors.