Cross-sectional validity of the Chelsea Critical Care Physical Assessment tool (CPAx) in critically ill adults

S. Eggmann1; ML. Verra1; V. Stefanicki1; A. Kindler1; D. Seyler1; R. Hilfiker1; JC. Schefold4; CH. Bastiaenen5; B. Zante1

1Department of Physiotherapy, Inselspital, Bern University Hospital, Insel Group, Bern, Switzerland; 2Physiotherapie, Schweizer Paraplegiker-Zentrum Nottwil, Nottwil, Switzerland; 3School of Health Sciences, HES-SO Valais-Wallis, Leukerbad, Switzerland; 4Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; 5Department of Epidemiology, Research Line Functioning and Rehabilitation Caphri, Maastricht University, Maastricht, Netherlands

Correspondence: S. Eggmann

Intensive Care Medicine Experimental 2020, 8(2): 000085

Introduction: The Chelsea Critical Care Physical Assessment tool (CPAx) is a performance-based measurement instrument to evaluate respiratory function, functional mobility and grip strength in critically ill adults [1]. The CPAx has established construct validity and high interrater reliability in a general ICU population [2], but little is known about its validity to measure change over time (cross-sectional-validity).

Objectives: The current study investigated cross-sectional validity at three relevant, pre-defined timepoints across the ICU and hospital stay in critically ill adults on prolonged mechanical ventilation.

Methods: This prospective, longitudinal, clinimetric study was conducted in a mixed ICU of a Swiss academic hospital. Participants were assessed by certified physiotherapists at three predefined timepoints: ICU baseline (between 72-144 h after the onset of mechanical ventilation), ICU discharge and hospital discharge. We hypothesized that the relationship of the CPAx with other measurement tools would differ between these timepoints due to temporal changes in the measured characteristics. Based on this theoretical model we determined 22 a-priori defined hypotheses about the relationship of the CPAx-GE with other instruments such as the Medical Research Council sum score (MRC-SS), ICU Mobility Scale (IMS) or Sequential Organ Failure Assessment (SOFA).

Results: CPAx data of 58 participants (70.7% male) with a median age of 68 years (IQR 56-73), APACHE II score of 32 (28-36) and ICU stay of 7.97 days (6.69-12.85) were analysed. Cross-sectional validity was excellent with 86% (6 of 7), 89% (8 out of 9) and 83% (5 out of 6) of the a-priori hypotheses accepted at ICU baseline, ICU discharge and hospital discharge, respectively. Floor (10%) and ceiling effects (6%) were likewise highly acceptable.

Conclusion: The CPAx demonstrated cross-sectional validity as an indicator of change over time. Floor and ceiling effects were low enabling therapists to detect change across the ICU and hospital stay. The CPAx can therefore be recommended to assess physical function and activity in critically ill adults from ICU baseline to ICU and hospital discharge.

Reference(s) and grant acknowledgment(s)
3. Research grant from physioswiss
4. PhD Grant from the Swiss Foundation for Physiotherapy Science

© The Authors(s) 2020. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Conclusion: Both piperacillin and tazobactam are measurable in stool during therapy; after discontinuation of therapy, piperacillin can be detected in feces for up to 6 days. This may have important consequences for disturbances of the microbiome and the impact of antibiotic therapy.

Introduction: Septic shock is one of the deadliest diseases worldwide, with a mortality rate of 30-50%. Antibiotic delay and higher microbial loads are known to increase morbi-mortality in sepsis. Loading doses achieve faster appropriate concentrations in plasma, allowing for a better bacterial kill. Bacterial kill and patient outcomes may be further improved by synergistic combination therapy, which is best established for betalactams and aminoglycosides. However, how the sequence of antibiotic administration impacts this synergy is unknown. While in vitro work suggests that giving the betalactam first improves bacterial clearance, the effect of antibiotic sequence has not been studied in vivo.

Objectives: Determine whether the sequence of antibiotic administration impacts bacterial kill and cytokine production in a monomicrobial rat model of septic shock.

Methods: Our monomicrobial peritonitis rat model of septic shock requires the surgical implant of a gelatin capsule with a fibrinogen clot, alpha cellulose and a known bacterial inoculum (2*10^6 cfu E. coli Bort) in the peritoneum of the rat. This capsule slowly dissolves and generates a progressive peritoneal infection that evolves into septic shock in 12 hours.

After septic shock is established, we fluid resuscitate the rats, connect them to mechanical ventilation, and start vasopressors if needed to achieve a MAP goal of 70 mmHg. We experiment with the order of antibiotics (cefotaxime [cef] and gentamicin [gent]) and compare them to monotherapy, untreated controls and sham controls, for a total of 7 treatment arms and 6 rats per arm. We used two doses of antibiotics: normal (cef 60 mg/kg, gent 10 mg/kg) and high (cef 120 mg/kg, gent 20 mg/kg).

We measure bacterial blood counts, cytokine profile, lactate and renal function at different time points. Following the ethics guidelines of University of Manitoba, we euthanize the rats to monotherapy, untreated controls and sham controls, for a total of 7 treatment arms and 6 rats per arm. We used two doses of antibiotics: normal (cef 60 mg/kg, gent 10 mg/kg) and high (cef 120 mg/kg, gent 20 mg/kg).

Combination therapy showed synergistic effects with a rapid and maintained bacterial clearance from the blood. Altering the antimicrobial sequence had no significant impact in our in vivo model of septic shock. Higher doses of antibiotics showed faster initial bacterial kill with cefotaxime monotherapy, and delayed the postantibiotic effect of gentamicin monotherapy.

Conclusion: Combination therapy showed synergistic effects with a rapid and maintained bacterial clearance from the blood. Altering the antimicrobial sequence had no significant impact in our in vivo model of septic shock. Higher doses of antibiotics showed faster initial bacterial kill with cefotaxime monotherapy, and delayed the postantibiotic effect of gentamicin monotherapy.

Objectives: Determine whether the sequence of antibiotic administration impacts bacterial kill and cytokine production in a monomicrobial rat model of septic shock.

Methods: Our monomicrobial peritonitis rat model of septic shock requires the surgical implant of a gelatin capsule with a fibrinogen clot, alpha cellulose and a known bacterial inoculum (2*10^6 cfu E. coli Bort) in the peritoneum of the rat. This capsule slowly dissolves and generates a progressive peritoneal infection that evolves into septic shock in 12 hours.

After septic shock is established, we fluid resuscitate the rats, connect them to mechanical ventilation, and start vasopressors if needed to achieve a MAP goal of 70 mmHg. We experiment with the order of antibiotics (cefotaxime [cef] and gentamicin [gent]) and compare them to monotherapy, untreated controls and sham controls, for a total of 7 treatment arms and 6 rats per arm. We used two doses of antibiotics: normal (cef 60 mg/kg, gent 10 mg/kg) and high (cef 120 mg/kg, gent 20 mg/kg).

We measure bacterial blood counts, cytokine profile, lactate and renal function at different time points. Following the ethics guidelines of University of Manitoba, we euthanize the rats to monotherapy, untreated controls and sham controls, for a total of 7 treatment arms and 6 rats per arm. We used two doses of antibiotics: normal (cef 60 mg/kg, gent 10 mg/kg) and high (cef 120 mg/kg, gent 20 mg/kg).

Combination therapy showed synergistic effects with a rapid and maintained bacterial clearance from the blood. Altering the antimicrobial sequence had no significant impact in our in vivo model of septic shock. Higher doses of antibiotics showed faster initial bacterial kill with cefotaxime monotherapy, and delayed the postantibiotic effect of gentamicin monotherapy.

Introduction: In the recent years a rapid increase in the age of patients admitted to the Intensive Care Units (ICU) was noted. Fewer limitations are now imposed on performing invasive treatments or surgery in old or even frail patients, especially when complemented by optimal supportive intensive care. However, little is known about the long term follow up of these patients.

Objectives: To evaluate the age stratified long-term all-cause mortality, after admission to the ICU. Secondly, to compare a one-year mortality rate of this cohort of critically ill patients after hospital discharge, with that of a standard population with the same age distribution.

Methods: Retrospective cohort study of all patients admitted to a multipurpose ICU between 2015-2019. Patients < 18 years or admitted for < 24 h were excluded. Only the first ICU admission was considered. Patients were followed until hospital discharge or death, whatever occurred first. One-year all-cause mortality was assessed for all patients. Standard Mortality Ratio (SMR) were determined at hospital discharge and at a 1-year follow-up.

We split the sample in 4 groups according to patients age at admission to the ICU: 18-50 (Adult); 51-65 (Senior); 66-80 (Old); > 80 (Very-old). Survival curves were plotted for all 4 groups according to the time of ICU admission. The ratio between observed and expected mortality was calculated, for patients discharged alive from the hospital and according to age-adjusted tables for the general Portuguese population.

Conclusion: Too old for the ICU? Long term prognosis of critically ill patients

A. Oliveira1, D. Rei1, M. Vera-Cruz1, J. Gonçalves-Pereira1

1Intensive Care Unit, Hospital de Vila Franca de Xira, Estrada Carlos Lima Costa, Vila Franca de Xira, Portugal; Vila Franca de Xira, Portugal

Correspondence: A. Oliveira

Intensive Care Medicine Experimental 2020, 8(2):000423

Introduction: In the recent years a rapid increase in the age of patients admitted to the Intensive Care Units (ICU) was noted. Fewer limitations are now imposed on performing invasive treatments or surgery in old or even frail patients, especially when complemented by optimal supportive intensive care. However, little is known about the long term follow up of these patients.

Objectives: To evaluate the age stratified long-term all-cause mortality, after admission to the ICU. Secondly, to compare a one-year mortality rate of this cohort of critically ill patients after hospital discharge, with that of a standard population with the same age distribution.

Methods: Retrospective cohort study of all patients admitted to a multipurpose ICU between 2015-2019. Patients < 18 years or admitted for < 24 h were excluded. Only the first ICU admission was considered. Patients were followed until hospital discharge or death, whatever occurred first. One-year all-cause mortality was assessed for all patients. Standard Mortality Ratio (SMR) were determined at hospital discharge and at a 1-year follow-up.

We split the sample in 4 groups according to patients age at admission to the ICU: 18-50 (Adult); 51-65 (Senior); 66-80 (Old); > 80 (Very-old). Survival curves were plotted for all 4 groups according to the time of ICU admission. The ratio between observed and expected mortality was calculated, for patients discharged alive from the hospital and according to age-adjusted tables for the general Portuguese population.

Conclusion: Too old for the ICU? Long term prognosis of critically ill patients

A. Oliveira1, D. Rei1, M. Vera-Cruz1, J. Gonçalves-Pereira1

1Intensive Care Unit, Hospital de Vila Franca de Xira, Estrada Carlos Lima Costa, Vila Franca de Xira, Portugal; Vila Franca de Xira, Portugal

Correspondence: A. Oliveira

Intensive Care Medicine Experimental 2020, 8(2):000423

Introduction: In the recent years a rapid increase in the age of patients admitted to the Intensive Care Units (ICU) was noted. Fewer limitations are now imposed on performing invasive treatments or surgery in old or even frail patients, especially when complemented by optimal supportive intensive care. However, little is known about the long term follow up of these patients.

Objectives: To evaluate the age stratified long-term all-cause mortality, after admission to the ICU. Secondly, to compare a one-year mortality rate of this cohort of critically ill patients after hospital discharge, with that of a standard population with the same age distribution.

Methods: Retrospective cohort study of all patients admitted to a multipurpose ICU between 2015-2019. Patients < 18 years or admitted for < 24 h were excluded. Only the first ICU admission was considered. Patients were followed until hospital discharge or death, whatever occurred first. One-year all-cause mortality was assessed for all patients. Standard Mortality Ratio (SMR) were determined at hospital discharge and at a 1-year follow-up.

We split the sample in 4 groups according to patients age at admission to the ICU: 18-50 (Adult); 51-65 (Senior); 66-80 (Old); > 80 (Very-old). Survival curves were plotted for all 4 groups according to the time of ICU admission. The ratio between observed and expected mortality was calculated, for patients discharged alive from the hospital and according to age-adjusted tables for the general Portuguese population.

Conclusion: Too old for the ICU? Long term prognosis of critically ill patients

A. Oliveira1, D. Rei1, M. Vera-Cruz1, J. Gonçalves-Pereira1

1Intensive Care Unit, Hospital de Vila Franca de Xira, Estrada Carlos Lima Costa, Vila Franca de Xira, Portugal; Vila Franca de Xira, Portugal

Correspondence: A. Oliveira

Intensive Care Medicine Experimental 2020, 8(2):000423

Introduction: In the recent years a rapid increase in the age of patients admitted to the Intensive Care Units (ICU) was noted. Fewer limitations are now imposed on performing invasive treatments or surgery in old or even frail patients, especially when complemented by optimal supportive intensive care. However, little is known about the long term follow up of these patients.

Objectives: To evaluate the age stratified long-term all-cause mortality, after admission to the ICU. Secondly, to compare a one-year mortality rate of this cohort of critically ill patients after hospital discharge, with that of a standard population with the same age distribution.

Methods: Retrospective cohort study of all patients admitted to a multipurpose ICU between 2015-2019. Patients < 18 years or admitted for < 24 h were excluded. Only the first ICU admission was considered. Patients were followed until hospital discharge or death, whatever occurred first. One-year all-cause mortality was assessed for all patients. Standard Mortality Ratio (SMR) were determined at hospital discharge and at a 1-year follow-up.

We split the sample in 4 groups according to patients age at admission to the ICU: 18-50 (Adult); 51-65 (Senior); 66-80 (Old); > 80 (Very-old). Survival curves were plotted for all 4 groups according to the time of ICU admission. The ratio between observed and expected mortality was calculated, for patients discharged alive from the hospital and according to age-adjusted tables for the general Portuguese population.

Conclusion: Too old for the ICU? Long term prognosis of critically ill patients

A. Oliveira1, D. Rei1, M. Vera-Cruz1, J. Gonçalves-Pereira1

1Intensive Care Unit, Hospital de Vila Franca de Xira, Estrada Carlos Lima Costa, Vila Franca de Xira, Portugal; Vila Franca de Xira, Portugal

Correspondence: A. Oliveira

Intensive Care Medicine Experimental 2020, 8(2):000423
A Kaplan-Meyer survival curve (KM) was computed to assess the differences between long term prognosis for the different age groups (Fig 1) and unveiled a statistically significant difference in the survival probability (log rank test, \(p < 0.01 \)). A sharp drop in survival in the first days was noted, corresponding to the in-hospital mortality. A continuous decay in survival was observed in the Old and Very-old groups that was less evident in the younger population.

One-year mortality rate after hospital discharge was higher in the older patients. The ratio between the observed and expected mortality (for an age adjusted control population) was significantly high for all age groups (Table 2).

Conclusion: The one-year mortality risk of critically ill patients of all age groups is very high, even after hospital discharge, largely above of the general population. SAPSII showed good accuracy to predict one-year mortality in this cohort. Although a continuous decline in survival is noted in the older patients, more than 50% of the Very-old patients are alive 1 year after ICU admission.

Table 2 - One-year mortality after discharge and age adjusted control population estimate

<table>
<thead>
<tr>
<th>Age Groups (years)</th>
<th>N</th>
<th>1st year After discharge</th>
<th>Population Estimate</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult (18-50)</td>
<td>322</td>
<td>24 (4.2%)</td>
<td>18 (2.8%)</td>
<td>14</td>
</tr>
<tr>
<td>Senior (51-65)</td>
<td>423</td>
<td>31 (2.7%)</td>
<td>30 (2.7%)</td>
<td>10.9</td>
</tr>
<tr>
<td>Old (66-80)</td>
<td>663</td>
<td>128 (18.4%)</td>
<td>18 (2.8%)</td>
<td>8</td>
</tr>
<tr>
<td>Very-old >80</td>
<td>82</td>
<td>89 (20.3%)</td>
<td>32 (10.6%)</td>
<td>2.8</td>
</tr>
<tr>
<td>Total</td>
<td>1750</td>
<td>550 (30.6%)</td>
<td>69 (3.5%)</td>
<td>7.8</td>
</tr>
</tbody>
</table>

Reference(s) and grant acknowledgment(s)

000426

Prediction of Hypotension Events with Physiologic Vital Sign Signatures in the Intensive Care Unit

J.H. Yoon1; V. Jeanselme2; A. Dubrawski2; M. Hravnak3; M. Pinsky4; G. Clermont4

1Pulmonary and Critical Care Medicine, University of Pittsburgh, Pittsburgh, United States of America; 2Auton lab. department of machine learning, Carnegie Mellon University, Pittsburgh, PA, United States of America; 3School of nursing, University of Pittsburgh, Pittsburgh, PA, United States of America; 4Critical care medicine, University of Pittsburgh, Pittsburgh, PA, United States of America

Correspondence: J.H. Yoon

Intensive Care Medicine Experimental 2020, 8(2): 000426

Introduction: Hypotension is known to be the most consistent manifestation of decompensated shock leading to major organ failure, and even brief hypotension is associated with increased morbidity and mortality. Several early warning scores have been introduced to identify patients at risk for decompenation and trigger escalation of care, but most of current scoring systems are unable to provide reliable, continuous feedback to clinicians who need to make time-sensitive decisions for rapidly fluctuating conditions in critically-ill patients.

Objectives: Using common vital sign data, we aim to develop a machine learning model to predict the initial hypotension event among intensive care unit (ICU) patients, and design an alert system for bedside implementation.

Methods: From the Medical Information Mart for Intensive Care III (MIMIC-3) dataset, minute-by-minute vital signs were extracted. An initial hypotension event was defined as at least 5 measurements within a 10-minute period of systolic blood pressure \(\leq 90 \) mmHg and mean arterial pressure \(\leq 60 \) mmHg. The performance of various supervised machine learning models was measured with area under the receiver operating characteristic curve (AUROC) and area under the precision recall curve (AUPRC). A random forest (RF) classifier was selected, trained with 10-fold cross validation method, then applied to an \(a \) priori separated out-of-sample validation cohort. Risk score trajectory was built from vital signs features on overlapping windows. For an alert system, hypotension alerts were generated using a two-step (stacked) approach. First, positive alerts were identified with risk score thresholds; then a second RF model was used to reduce false alerts, followed by imposing a lock-out time for alerts to decrease alarm fatigue.

Results: We identified 1532 subjects (1946 ICU stays) as the case group (experienced a hypotension event), and 1707 subjects (2585 ICU stays) as the control group. The RF model showed AUROC of 0.93, 0.91, and 0.88 at 15, 30, and 60 minutes before hypotension, AUPRC of 0.77, and a low calibration score (Brier score 0.09). Mean risk score trajectories revealed a clear separation with 80% of cases predicted at 15 minutes before hypotension, and more than 60% at one hour before the hypotension. For the alert system, the stacked machine learning model with lock-out of 15 minutes produced on average 0.79 alerts/subject/hour for future hypotension, with a positive predictive value (probability of developing hypotension) of 65% and sensitivity of 92.4%.

Conclusion: Most clinically significant hypotension events in the ICU can be predicted from bedside physiologic monitoring at least 1 hour before the initial hypotension episode. Designing a practical alert system with high sensitivity and acceptable positive predictive value for hypotension prediction is feasible, with low rate of alerts.

Reference(s) and grant acknowledgment(s)