Isokinetic profile of the shoulder internal and external rotators in surfers

Miguel Madeira¹, Pedro Nobre¹, Tomás Costa¹, Vasco Almeida¹, João Paulo Sousa¹,² and Ângela Maria Pereira¹,³,⁴

¹Physiotherapy, Escola Superior de Saúde Egas Moniz; ²Departamento de Desporto e Saúde, Escola de Ciência e Tecnologia, Comprehensive Health Research Center, Universidade de Évora; ³Centro de investigação interdisciplinar Egas Moniz; ⁴Hospital Garcia de Orta, Almada, Portugal
E-mail contact: amclap@gmail.com

Introduction:
Shoulder pain and shoulder instability has been largely associated with overhead sports as swimming, volleyball or baseball (1-2). The measurement of concentric torque and agonist/antagonist ratio of the internal (IR) and external rotators (ER) of the shoulder, has been used to relate the symptoms with altered parameters in this assessment (3). Surfing, as an exponential growing sport, is also considered an overhead sport, since over 50% of the time spent practicing is done by paddling technique (4). To date, there was no study found to evaluate shoulder internal and external rotators isokinetic profile in this population. As so, the aim of this study is to characterize the isokinetic profile of the shoulder internal and external rotators in surfers.

Materials and Methods:
The authors measured bilaterally the shoulder concentric torque and unilateral ratios for the internal and external rotators of 5 male surfers, aged between 19 and 23, who have been practicing for at least 3 years for a minimum of 2,5h per week. The procedure was done in the sitting position with 90° shoulder abduction and 90° elbow flexion (figure 1 and 2) at 60°/s and 180°/s angular speed by means of 3 and 20 repetitions respectively, using an isokinetic dynamometer (Biodex System 3).

Results:
The participants mean age was 22.13±1.78 years, with a BMI of 22.57±2.14 kg/m². Surfers presented for 60°/s concentric torque test of IR of dominant shoulder a 48.73±6.45Nm and 44.23±11.55Nm for non-dominant shoulder. Concentric ratio ER/IR at the same speed for the dominant shoulder of 75.53±7.5 % and 78.48±11.69 % for the non-dominant shoulder. At 180°/s concentric torque test of IR of dominant shoulder a 48.08±4.18Nm and 42.73± 5.21Nm for non-dominant shoulder. Concentric ratio ER/IR at the same speed for the dominant shoulder of 74.90±8.24 % and 78.55±7.92 % for the non-dominant shoulder. There’s a difference between the surfers ER/IR ratio, depending on their surfing experience or other sports/gym practice, showing lower percentage for those who have been surfing the longest or not performing other sport/gym practice (graphic 1 and 2).

Discussion and Conclusions:
Based on preliminary data, it seems that larger experience (years) is associated with higher shoulder instability. Gym or other sports practice seems to reduce this risk. Surfers obtained higher values for concentric torque of IR and smaller percentage for ER/IR ratio in both dominant and non-dominant limbs when compared to data obtained from other studies with control (non-practice of overhead sport) populations within the same characteristics (5). Studies where ER/IR torque ratio was measured in overhead athletes showed slightly smaller ratios when compared to the surfers (3). This is probably related with the moderate frequency and intensity of training of the surfers in this study when compared with high intensity/frequency of the overhead athletes. The main limitation of the study is the reduced and heterogeneous sample.

References