2nd European-Portuguese version of CAPE-V: Psychometric characteristics

Sancha C. de Almeida
Ana P. Mendes
Gail B. Kempster

University College London
28th & 29th March 2017
II. REVIEW OF THE LITERATURE
I. REVIEW OF THE LITERATURE

• Auditory-perceptual evaluation:

 ▪ "Golden standard" for documenting voice disorders;
 ▪ Non-invasive, thus comfortable to the patient;
 ▪ Succinct, quick to perform, and low cost.

Carding et al. (2000)
Carding, Wilson, MacKenzie & Deary (2009)
Oates (2009)
Sáenz-Lechón et al. (2006)
Speyer (2008)
• Auditory-perceptual evaluation:

 ▪ “Golden standard” for documenting voice disorders;
 ▪ Non-invasive, thus comfortable to the patient;
 ▪ Succinct, quick to perform, and low cost.

Used worldwide

Carding et al. (2000)
Carding, Wilson, MacKenzie & Deary (2009)
Oates (2009)
Sáenz-Lechón et al. (2006)
Speyer (2008)
• Auditory-perceptual evaluation:

 ▪ Usually considered to be subjective;
 ▪ Influenced by several factors:
 ▪ Listener’s standards;
 ▪ Voice stimuli;
 ▪ Type of rating scale.

Kreiman et al. (1990) Zraick et al. (2005)

Font: The scientific parente, 2015
I. REVIEW OF THE LITERATURE

- **CAPE-V**: ASHA (2006)
- **(I)INFVo**: Moerman et al. (2006)
- **SVEA**: Hammarberg (2000)
- **GIRBAS**: Dejonckere et al. (1996)
- **GRABASH**: Nerm & Lehn (2010)
- **VPAS**: Laver et al. (1981)
- **GRBAS**: Hirano (1981)
- **RASAT**: Pinho & Pontes (2002)
- **RASATI**: Pinho & Pontes (2008)
- **Buffalo III VP**: Wilson (1987)
I. REVIEW OF THE LITERATURE

- **CAPE-V** (ASHA (2006))
- **(I)INFVo** (Moerman et al. (2006))
- **SVEA** (Hammarberg (2000))
- **GIRBAS** (Dejonckere et al. (1996))
- **GRABASH** (Nerm & Lehn (2010))
- **VPAS** (Laver et al. (1981))
- **GRBAS** (Hirano (1981))
- **RASAT** (Pinho & Pontes (2002))
- **RASATI** (Pinho & Pontes (2008))
- **Buffalo III VP** (Wilson (1987))
I. REVIEW OF THE LITERATURE

CAPE-V
ASHA (2006)

Widely used by health and/or educational professionals in voice field (i.e. SLP, ENT, voice teachers).

GRBAS
Hirano (1981)

Nemr et al. (2012)
I. REVIEW OF THE LITERATURE

CAFE-V

Phonatory tasks → [a, i] sustained + sentences reading + spontaneous speech

ASHA (2006)
Kempster et al. (2009)
I. REVIEW OF THE LITERATURE

CAPE-V

Phonatory tasks

[a, i] sustained + sentences reading + spontaneous speech

Vocal parameters

- Overall severity
- Roughness
- Breathiness
- Strain
- Pitch
- Loudness
I. REVIEW OF THE LITERATURE

CAFE-V

Phonatory tasks →
[a, i] sustained + sentences reading + spontaneous speech

Vocal parameters →
- Overall severity
- Roughness
- Breathiness
- Strain
- Pitch
- Loudness

Rating scale → **Visual-analog (0 – 100 mm)**
Several studies have addressed **CAPE-V psychometric characteristics**:

- **Validity** – content, construct and concurrent;
- **Reliability** – inter- and intra-rater.

References:

- Jesus et al. (2009b)
- Jesus et al. (2009a)
- Karnell et al. (2007)
- Kelchener et al. (2010)
- Mozzanica et al. (2013)
- Nerm et al. (2012)
- Nerm et al. (2015)
- Núñez-Batalla et al. (2015)
- Zraick et al. (2011)
Several studies have addressed CAPE-V psychometric characteristics:

Supporting its use for clinical and scientific auditory-perceptual voice evaluation.

- Jesus et al. (2009b)
- Jesus et al. (2009a)
- Karnell et al. (2007)
- Kelchener et al. (2010)
- Mozanica et al. (2013)
- Nerm et al. (2012)
- Nerm et al. (2015)
- Núñez-Batalla et al. (2015)
- Zraick et al. (2011)
I. REVIEW OF THE LITERATURE

• **CAPE-V original version** can not be applied to European Portuguese (EP) because of the differences between these languages.

• **CAPE-V was translated into EP in 2009.**
I. REVIEW OF THE LITERATURE

- **CAPE-V original version** can not be applied to European Portuguese (EP) because of the differences between these languages.

- **CAPE-V was translated into EP in 2009.**

 Psychometric analysis revealed some validity and reliability problems.

Jesus et al. (2009b)
Jesus et al. (2009a)
• **CAPE-V original version** cannot be applied to European Portuguese (EP) because of the differences between these languages.

• **CAPE-V** was translated into EP in 2009.

Psychometric analysis revealed some validity and reliability problems.

Jesus et al. (2009b)
Jesus et al. (2009a)
I. REVIEW OF THE LITERATURE

Develop a valid and reliable EP version of the 2nd edition of CAPE-V

Based on the \textbf{psychometric characteristics} recommend by SACMOT*

*SACMOT – “Scientific Advisory Committee of the Medical Outcomes Trust”
I. REVIEW OF THE LITERATURE

Develop a valid and reliable EP version of the 2nd edition of CAPE-V

Based on the psychometric characteristics recommend by SACMOT

2nd EP version of CAPE-V (II EP CAPE-V)

SACMOT – “Scientific Advisory Committee of the Medical Outcomes Trust”
I. REVIEW OF THE LITERATURE
I. REVIEW OF THE LITERATURE

1. II EP CAPE-V validity:
 1.1. Content validity;
 1.2. Construct validity;
 1.3. Concurrent validity;

2. II EP CAPE-V reliability:
 2.1. Inter-rater reliability;
 2.2. Intra-rater reliability;
III. METHODS
II. METHODS

Research design:

- Transversal
- Observational
- Descriptive
- Comparative
Speakers:

• Nonrandomized convenience sample;

• 20 EP speakers

Control group (CG) (n=10)
5 M (\bar{X} 45 yrs)
5 F (\bar{X} 43 yrs)

Dysphonic group (DG) (n=10)
5 M (\bar{X} 45 yrs)
5 F (\bar{X} 42 yrs)
II. METHODS

Speakers:

- Nonrandomized convenience sample;

- 20 EP speakers

 - Control group (CG) (n=10)
 - 5 M (X 45 yrs)
 - 5 F (X 43 yrs)

 - Dysphonic group (DG) (n=10)
 - 5 M (X 45 yrs)
 - 5 F (X 42 yrs)

Matched by age and gender
II. METHODS

Listeners:

• Nonrandomized convenience sample;

• 14 SLT
 ▪ >5 yrs voice clinical practice;
 ▪ Weekly voice cases;
 ▪ Bilateral normal hearing limits for speech production;

 2 M (\(\bar{X}=28\) yrs)
 12 F (\(\bar{X}=38\) yrs)
II. METHODS

Voice samples were recorded on TASCAM DR-05 coupled to PYLE PMEMI.

Ambient noise < 50 dB confirmed by SLM305.

Electret condenser, omnidirectional with linear frequency response 20Hz-20KHz and sensitivity -44dB±3dB.

16 bits, mono, with a sample frequency of 44100 Hz.
II. METHODS

II EP CAPE-V

<table>
<thead>
<tr>
<th>Grau de severidade global</th>
<th>C</th>
<th>1</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rouquidão</td>
<td>C</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>Soprealtidade</td>
<td>C</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>Tensão</td>
<td>C</td>
<td>1</td>
<td>100</td>
</tr>
</tbody>
</table>

Classifique cada parâmetro vocal numa escala de “0” (normal), “1” (alteração ligeira), “2” (alteração moderada) e “3” (alteração severa).

Escala GRBAS1

- G - Grau
- R - Rouquidão
- S - Soprealtidade
- A - Assenta
- S - Tensão

COMENTÁRIOS SOBRE A RESSONÂNCIA: Normal
ALTERADA [Breve descrição]

FACTORES ADICIONAIS (por ex.: disfonia, aspera, falto, assen, afronta, intensidade, tonos, esonência, "glottal fry", outros aspectos relevantes)

1 Hirano (1981)
II. METHODS

CAPE-V re-translation, granted by ASHA
II. METHODS

CAPE-V re-translation, granted by ASHA

1. **Reading aloud sentences**
 Proposal of 6 new sentences adapted to EP

2. **Spontaneous speech**
 Prompt “Tell me about the place where you grew up”
II. METHODS

CAPE-V re-translation, granted by ASHA

Sentence A

[nu’dumigui’/stev’so’fujko’ue’vo’tonjwa’ple’nade’evureku’merumee’pade]

“On Sunday it was sunny and I went with grand-father António to the terrace of the “Évora” cafe to eat a pie”

➢ Target:

Coarticulatory influence of all oral and nasal EP vowels.
Sentence B

[si’yũdusi’mẽw’/sɔsə’muŋe’ʃaβi]

“According to Simão, only Samuel knows”

➢ Target:
Soft glottal attacks in voiceless to voiced transition.
CAPE-V re-translation, granted by ASHA

Sentence C

[əˈζɛ/ˈmɛjduɡɐbriˈeʃ/ˈdɛwʊurnishedˈrɛζeiˈvɨɲuˈvɐjʊdiˈɾunɐ]

“Zé, Gabriel’s mother, gave him an orange cake and old wine from Runa”

Target:
Eventual voiced stoppages/spasms produced by all EP voiced phonemes.
II. METHODS

CAPE-V re-translation, granted by ASHA

Sentence D

[ˈɛˈcrepənˌɾakeˈiraˈkase]

“It is time for Urraca to go hunting”

➢ Target:

Hard glottal attach through words beginning with vowels.
Where I play, there is a swallow’s nest next to the wall.

Sentence E

[ˈoːdewˈbrikəu/ˈaʊniŋudəduˈrɪnezɛkuʃˈtadwawˈmuru]

“Where I play, there is a swallow’s nest next to the wall”

Target:

Hyponasality and possible stimulability for Resonant Voice Therapy through words with all EP nasal vowels and consonants.
II. METHODS

Target: **Hypernasality** or nasal air emission through voiceless plosive sounds.

Sentence F

[e’kikupe’poe’tue’kae’prete]

“Kika covered your black cape”

CAPE-V re-translation, granted by ASHA
II. METHODS

CAPE-V re-translation, granted by ASHA

ENT appointment of Speakers
(direct laryngoscopy)

Control group (n=10)
(no organic/functional laryngeal disorder)

Dysphonic group (n=10)
(presence of organic/functional laryngeal disorder)
II. METHODS

CAPE-V re-translation, granted by ASHA

ENT appointment of Speakers (direct laryngoscopy)

Control group (n=10) (no organic/functional laryngeal disorder)

Dysphonic group (n=10) (presence of organic/functional laryngeal disorder)

Voice recording of 20 speakers (CAPE-V phonatory tasks)
II. METHODS

CAPE-V re-translation, granted by ASHA

ENT appointment of Speakers (direct laryngoscopy)

Control group (n=10) (no organic/functional laryngeal disorder)

Dysphonic group (n=10) (presence of organic/functional laryngeal disorder)

Voice recording of 20 speakers (CAPE-V phonatory tasks)

14 judges listened to 26 voice samples and rated them with II EP CAPE-V
II. METHODS

CAFE-V re-translation, granted by ASHA

ENT appointment of Speakers (direct laryngoscopy)

Control group (n=10) (no organic/functional laryngeal disorder)

Dysphonic group (n=10) (presence of organic/functional laryngeal disorder)

Voice recording of 20 speakers (CAPE-V phonatory tasks)

14 judges listened to 26 voice samples and rated them with II EP CAPE-V

14 judges listened to 26 voice samples and rated them with GRBAS

1 week interval
II. METHODS

Statistical analysis

• Validity
 ▪ Construct validity (Student t-test, $\alpha=.05$)
 ▪ Concurrent validity (multi-serial correlation, $r>.70$)

• Reliability
 ▪ Inter-rater reliability ($ICC>.70$)
 ▪ Intra-rater reliability (Pearson correlation, $r>.70$)
Statistical analysis

- **Validity**
 - Construct validity (*Student t-test, α=.05*)
 - Concurrent validity (*multi-serial correlation, r>.70*)

- **Reliability**
 - Inter-rater reliability (*ICC>.70*)
 - Intra-rater reliability (*Pearson correlation, r>.70*)

- **SPSS 22.0** *(IBM SPSS, 2013)*
II. METHODS

Statistical analysis

• Validity
 ▪ Construct validity (*Student t* test, α=.05)
 ▪ Concurrent validity (*multi-serial correlation, r*.70)
 ▪ **LISREL 8.80** (Jöreskog & Sörbom, 2006)

• Reliability
 ▪ Inter-rater reliability (*ICC*.70)
 ▪ Intra-rater reliability (*Pearson correlation, r*.70)
III. RESULTS

IV. RESULTS
Construct validity of II CAPE-V PE

<table>
<thead>
<tr>
<th>Vocal parameter</th>
<th>Control group Mean±SD</th>
<th>Dysphonic group Mean±SD</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall severity</td>
<td>12.77 ± 11.88</td>
<td>38.24 ± 21.04</td>
<td>.01*</td>
</tr>
<tr>
<td>Roughness</td>
<td>13.68 ± 7.92</td>
<td>39.01 ± 11.49</td>
<td>.00*</td>
</tr>
<tr>
<td>Breathiness</td>
<td>12.77 ± 11.88</td>
<td>38.24 ± 21.04</td>
<td>.01*</td>
</tr>
<tr>
<td>Strain</td>
<td>23.04 ± 12.87</td>
<td>26.59 ± 11.06</td>
<td>.52</td>
</tr>
<tr>
<td>Pitch</td>
<td>7.98 ± 5.18</td>
<td>20.29 ± 10.41</td>
<td>.01*</td>
</tr>
<tr>
<td>Loudness</td>
<td>9.62 ± 5.59</td>
<td>20.26 ± 13.59</td>
<td>.04*</td>
</tr>
</tbody>
</table>

SD=standard deviation; p<.05
III. RESULTS

Construct validity of II CAPE-V PE

<table>
<thead>
<tr>
<th>Vocal parameter</th>
<th>Control group Mean±SD</th>
<th>Dysphonic group Mean±SD</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall severity</td>
<td>12.77 ± 11.88</td>
<td>38.24 ± 21.04</td>
<td>.01*</td>
</tr>
<tr>
<td>Roughness</td>
<td>13.68 ± 7.92</td>
<td>39.01 ± 11.49</td>
<td>.00*</td>
</tr>
<tr>
<td>Breathiness</td>
<td>12.77 ± 11.88</td>
<td>38.24 ± 21.04</td>
<td>.01*</td>
</tr>
<tr>
<td>Strain</td>
<td>23.04 ± 12.87</td>
<td>26.59 ± 11.06</td>
<td>.52</td>
</tr>
<tr>
<td>Pitch</td>
<td>7.98 ± 5.18</td>
<td>20.29 ± 10.41</td>
<td>.01*</td>
</tr>
<tr>
<td>Loudness</td>
<td>9.62 ± 5.59</td>
<td>20.26 ± 13.59</td>
<td>.04*</td>
</tr>
</tbody>
</table>

SD=standard deviation; \(p < .05 \)
Concurrent validity of II CAPE-V PE

<table>
<thead>
<tr>
<th>CAPE-V</th>
<th>GRBAS</th>
<th>Multi-serial correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall severity</td>
<td>Grade</td>
<td>.95</td>
</tr>
<tr>
<td>Roughness</td>
<td>Roughness</td>
<td>.89</td>
</tr>
<tr>
<td>Breathiness</td>
<td>Breathiness</td>
<td>.90</td>
</tr>
<tr>
<td>Strain</td>
<td>Strain</td>
<td>.47</td>
</tr>
</tbody>
</table>

$r > .70$
Concurrent validity of II CAPE-V PE

<table>
<thead>
<tr>
<th>CAPE-V</th>
<th>GRBAS</th>
<th>Multi-serial correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall severity</td>
<td>Grade</td>
<td>.95</td>
</tr>
<tr>
<td>Roughness</td>
<td>Roughness</td>
<td>.89</td>
</tr>
<tr>
<td>Breathiness</td>
<td>Breathiness</td>
<td>.90</td>
</tr>
<tr>
<td>Strain</td>
<td>Strain</td>
<td>.47</td>
</tr>
</tbody>
</table>

$r > .70$
Inter-rater reliability of II CAPE-V PE

<table>
<thead>
<tr>
<th>Vocal parameters</th>
<th>ICC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall severity</td>
<td>.96</td>
</tr>
<tr>
<td>Roughness</td>
<td>.92</td>
</tr>
<tr>
<td>Breathiness</td>
<td>.95</td>
</tr>
<tr>
<td>Strain</td>
<td>.84</td>
</tr>
<tr>
<td>Pitch</td>
<td>.86</td>
</tr>
<tr>
<td>Loudness</td>
<td>.90</td>
</tr>
</tbody>
</table>

ICC=intraclass correlation coefficient
Inter-rater reliability of II CAPE-V PE

<table>
<thead>
<tr>
<th>Vocal parameters</th>
<th>ICC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall severity</td>
<td>.96</td>
</tr>
<tr>
<td>Roughness</td>
<td>.92</td>
</tr>
<tr>
<td>Breathiness</td>
<td>.95</td>
</tr>
<tr>
<td>Strain</td>
<td>.84</td>
</tr>
<tr>
<td>Pitch</td>
<td>.86</td>
</tr>
<tr>
<td>Loudness</td>
<td>.90</td>
</tr>
</tbody>
</table>

ICC=intraclass correlation coefficient
Intra-rater reliability of II CAPE-V PE

<table>
<thead>
<tr>
<th>Vocal parameters</th>
<th>r</th>
<th>Nº of raters with $r > .70$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall severity</td>
<td>.87</td>
<td>10</td>
</tr>
<tr>
<td>Roughness</td>
<td>.61</td>
<td>6</td>
</tr>
<tr>
<td>Breathiness</td>
<td>.87</td>
<td>8</td>
</tr>
<tr>
<td>Strain</td>
<td>.73</td>
<td>5</td>
</tr>
<tr>
<td>Pitch</td>
<td>.92</td>
<td>6</td>
</tr>
<tr>
<td>Loudness</td>
<td>.69</td>
<td>7</td>
</tr>
</tbody>
</table>

$r > .70$
Intra-rater reliability of II CAPE-V PE

<table>
<thead>
<tr>
<th>Vocal parameters</th>
<th>r</th>
<th>Nº of raters with $r > .70$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall severity</td>
<td>.87</td>
<td>10</td>
</tr>
<tr>
<td>Roughness</td>
<td>.61</td>
<td>6</td>
</tr>
<tr>
<td>Breathiness</td>
<td>.87</td>
<td>8</td>
</tr>
<tr>
<td>Strain</td>
<td>.73</td>
<td>5</td>
</tr>
<tr>
<td>Pitch</td>
<td>.92</td>
<td>6</td>
</tr>
<tr>
<td>Loudness</td>
<td>.69</td>
<td>7</td>
</tr>
</tbody>
</table>

$r > .70$
V. DISCUSSION
II EP CAPE-V Content Validity

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Validity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall severity</td>
<td>✓</td>
</tr>
<tr>
<td>Roughness</td>
<td>✓</td>
</tr>
<tr>
<td>Breathiness</td>
<td>✓</td>
</tr>
<tr>
<td>Strain</td>
<td>✓</td>
</tr>
<tr>
<td>Pitch</td>
<td>✓</td>
</tr>
<tr>
<td>Loudness</td>
<td>✓</td>
</tr>
</tbody>
</table>
II EP CAPE-V

<table>
<thead>
<tr>
<th>II EP CAPE-V</th>
<th>Content Validity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall severity</td>
<td>✓</td>
</tr>
<tr>
<td>Roughness</td>
<td>✓</td>
</tr>
<tr>
<td>Breathiness</td>
<td>✓</td>
</tr>
<tr>
<td>Strain</td>
<td>✓</td>
</tr>
<tr>
<td>Pitch</td>
<td>✓</td>
</tr>
<tr>
<td>Loudness</td>
<td>✓</td>
</tr>
</tbody>
</table>

- Assured by an EP linguistic expert:
 - 6 new sentences
 - Spontaneous speech
 - “Tell me about the place where you grew up”
<table>
<thead>
<tr>
<th>II EP CAPE-V</th>
<th>Validity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Content</td>
</tr>
<tr>
<td>Overall severity</td>
<td>✓</td>
</tr>
<tr>
<td>Roughness</td>
<td>✓</td>
</tr>
<tr>
<td>Breathiness</td>
<td>✓</td>
</tr>
<tr>
<td>Strain</td>
<td>✓</td>
</tr>
<tr>
<td>Pitch</td>
<td>✓</td>
</tr>
<tr>
<td>Loudness</td>
<td>✓</td>
</tr>
</tbody>
</table>

✓ = p<.05; ✗ = p>.05
IV. DISCUSSION

<table>
<thead>
<tr>
<th>II EP CAPE-V</th>
<th>Construct validity</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall severity</td>
<td></td>
<td>.01*</td>
</tr>
<tr>
<td>Roughness</td>
<td></td>
<td>.00*</td>
</tr>
<tr>
<td>Breathiness</td>
<td></td>
<td>.01*</td>
</tr>
<tr>
<td>Strain</td>
<td></td>
<td>.52</td>
</tr>
<tr>
<td>Pitch</td>
<td></td>
<td>.01*</td>
</tr>
<tr>
<td>Loudness</td>
<td></td>
<td>.04*</td>
</tr>
</tbody>
</table>

p < .05
IV. DISCUSSION

<table>
<thead>
<tr>
<th>II EP CAPE-V</th>
<th>Construct validity p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall severity</td>
<td>.01*</td>
</tr>
<tr>
<td>Roughness</td>
<td>.00*</td>
</tr>
<tr>
<td>Breathiness</td>
<td>.01*</td>
</tr>
<tr>
<td>Strain</td>
<td>.52</td>
</tr>
<tr>
<td>Pitch</td>
<td>.01*</td>
</tr>
<tr>
<td>Loudness</td>
<td>.04*</td>
</tr>
</tbody>
</table>

$p < .05$

Similar to:
- Mozzanica et al. (2013)
- Nerm et al. (2015)
IV. DISCUSSION

- $\bar{X}_{DG} > CG$;

<table>
<thead>
<tr>
<th>II EP CAPE-V</th>
<th>Construct validity</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall severity</td>
<td></td>
<td>.01*</td>
</tr>
<tr>
<td>Roughness</td>
<td></td>
<td>.00*</td>
</tr>
<tr>
<td>Breathiness</td>
<td></td>
<td>.01*</td>
</tr>
<tr>
<td>Strain</td>
<td></td>
<td>.52</td>
</tr>
<tr>
<td>Pitch</td>
<td></td>
<td>.01*</td>
</tr>
<tr>
<td>Loudness</td>
<td></td>
<td>.04*</td>
</tr>
</tbody>
</table>

$p < .05$
<table>
<thead>
<tr>
<th>II EP CAPE-V</th>
<th>Construct validity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall severity</td>
<td>.01*</td>
</tr>
<tr>
<td>Roughness</td>
<td>.00*</td>
</tr>
<tr>
<td>Breathiness</td>
<td>.01*</td>
</tr>
<tr>
<td>Strain</td>
<td>.52</td>
</tr>
<tr>
<td>Pitch</td>
<td>.01*</td>
</tr>
<tr>
<td>Loudness</td>
<td>.04*</td>
</tr>
</tbody>
</table>

- $\bar{X}_{DG} > \bar{X}_{CG}$;
- Vocal parameter with $> \bar{X}$ e SD in CG.
II EP CAPE-V

<table>
<thead>
<tr>
<th>II EP CAPE-V</th>
<th>Content</th>
<th>Construct</th>
<th>Concurrent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall severity</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Roughness</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Breathiness</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Strain</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Pitch</td>
<td>✓</td>
<td>✓</td>
<td>NA</td>
</tr>
<tr>
<td>Loudness</td>
<td>✓</td>
<td>✓</td>
<td>NA</td>
</tr>
</tbody>
</table>

✓ = >.70; ✗ = <.70; NA = Not applicable
Concurrent validity: multi-serial correlation

<table>
<thead>
<tr>
<th>II EP CAPE-V GRBAS</th>
<th>Overall severity/grade</th>
<th>Roughness</th>
<th>Breathiness</th>
<th>Strain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.95</td>
<td>.89</td>
<td>.90</td>
<td>.47</td>
</tr>
</tbody>
</table>

Similar to:
- Karnell et al. (2007)

$r > .70$
Concurrent validity

<table>
<thead>
<tr>
<th>II EP CAPE-V GRBAS</th>
<th>Concurrent validity multi-serial correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall severity/grade</td>
<td>.95</td>
</tr>
<tr>
<td>Roughness</td>
<td>.89</td>
</tr>
<tr>
<td>Breathiness</td>
<td>.90</td>
</tr>
<tr>
<td>Strain</td>
<td>.47</td>
</tr>
</tbody>
</table>

$r > .70$

> then:
- Jesus et al. (2009b)
- Zraick et al. (2011)
- Mozzanica et al. (2013)
- Núñez-Batalla et al. (2015)
II EP CAPE-V GRBAS

<table>
<thead>
<tr>
<th>Concurrent validity multi-serial correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall severity/grade</td>
</tr>
<tr>
<td>Roughness</td>
</tr>
<tr>
<td>Breathiness</td>
</tr>
<tr>
<td>Strain</td>
</tr>
</tbody>
</table>

\(r > .70 \)

- Karnell et al. (2007)
- Zraick et al. (2011)
- Mozzanica et al. (2013)
- Núñez-Batalla et al. (2015)
<table>
<thead>
<tr>
<th>II EP CAPE-V</th>
<th>Content</th>
<th>Validity</th>
<th>Reliability</th>
<th>Inter-rater</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Construct</td>
<td>Concurrent</td>
<td></td>
</tr>
<tr>
<td>Overall severity</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Roughness</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Breathiness</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Strain</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>Pitch</td>
<td>✓</td>
<td>✓</td>
<td>NA</td>
<td>✓</td>
</tr>
<tr>
<td>Loudness</td>
<td>✓</td>
<td>✓</td>
<td>NA</td>
<td>✓</td>
</tr>
</tbody>
</table>

✓ = >.70; ✗ = <.70; NA=Not applicable
IV. DISCUSSION

<table>
<thead>
<tr>
<th>II EP CAPE-V</th>
<th>Inter-rater reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall severity</td>
<td>(0.96)</td>
</tr>
<tr>
<td>Roughness</td>
<td>(0.92)</td>
</tr>
<tr>
<td>Breathiness</td>
<td>(0.95)</td>
</tr>
<tr>
<td>Strain</td>
<td>(0.84)</td>
</tr>
<tr>
<td>Pitch</td>
<td>(0.86)</td>
</tr>
<tr>
<td>Loudness</td>
<td>(0.90)</td>
</tr>
</tbody>
</table>

\(\text{ICC}>0.70\)
IV. DISCUSSION

II EP CAPE-V Inter-rater reliability

<table>
<thead>
<tr>
<th>Measure</th>
<th>ICC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall severity</td>
<td>.96</td>
</tr>
<tr>
<td>Roughness</td>
<td>.92</td>
</tr>
<tr>
<td>Breathiness</td>
<td>.95</td>
</tr>
<tr>
<td>Strain</td>
<td>.84</td>
</tr>
<tr>
<td>Pitch</td>
<td>.86</td>
</tr>
<tr>
<td>Loudness</td>
<td>.90</td>
</tr>
</tbody>
</table>

ICC > .70

Similar to:

- Jesus et al. (2009a)
II EP CAPE-V

<table>
<thead>
<tr>
<th>II EP CAPE-V</th>
<th>Inter-rater reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall severity</td>
<td>.96</td>
</tr>
<tr>
<td>Roughness</td>
<td>.92</td>
</tr>
<tr>
<td>Breathiness</td>
<td>.95</td>
</tr>
<tr>
<td>Strain</td>
<td>.84</td>
</tr>
<tr>
<td>Pitch</td>
<td>.86</td>
</tr>
<tr>
<td>Loudness</td>
<td>.90</td>
</tr>
</tbody>
</table>

ICC > .70

> then:
- Karnell et al. (2007)
- Kelchener et al. (2010)
- Zraick et al. (2011)
- Nerm et al. (2012)
- Mozzanica et al. (2013)
- Núñez-Batalla et al. (2015)
III EP CAPE-V

<table>
<thead>
<tr>
<th></th>
<th>Validity</th>
<th>Reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Content</td>
<td>Construct</td>
</tr>
<tr>
<td>Overall severity</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Roughness</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Breathiness</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Strain</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>Pitch</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Loudness</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

✓ = >.70; × = <.70; NA=Not applicable
II EP CAPE-V

<table>
<thead>
<tr>
<th>Metric</th>
<th>Intra-rater reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall severity</td>
<td>0.87</td>
</tr>
<tr>
<td>Roughness</td>
<td>0.61</td>
</tr>
<tr>
<td>Breathiness</td>
<td>0.87</td>
</tr>
<tr>
<td>Strain</td>
<td>0.73</td>
</tr>
<tr>
<td>Pitch</td>
<td>0.92</td>
</tr>
<tr>
<td>Loudness</td>
<td>0.69</td>
</tr>
</tbody>
</table>

$r > 0.70$
Intra-rater reliability

<table>
<thead>
<tr>
<th>II EP CAPE-V</th>
<th>Intra-rater reliability (r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall severity</td>
<td>.87</td>
</tr>
<tr>
<td>Roughness</td>
<td>.61</td>
</tr>
<tr>
<td>Breathiness</td>
<td>.87</td>
</tr>
<tr>
<td>Strain</td>
<td>.73</td>
</tr>
<tr>
<td>Pitch</td>
<td>.92</td>
</tr>
<tr>
<td>Loudness</td>
<td>.69</td>
</tr>
</tbody>
</table>

\(r > .70 \)

< then:
- Mozzanica et al. (2013)
- Núñez-Batalla et al. (2015)
Intra-rater reliability

<table>
<thead>
<tr>
<th>II EP CAPE-V</th>
<th>Intra-rater reliability r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall severity</td>
<td>.87</td>
</tr>
<tr>
<td>Roughness</td>
<td>.61</td>
</tr>
<tr>
<td>Breathiness</td>
<td>.87</td>
</tr>
<tr>
<td>Strain</td>
<td>.73</td>
</tr>
<tr>
<td>Pitch</td>
<td>.92</td>
</tr>
<tr>
<td>Loudness</td>
<td>.69</td>
</tr>
</tbody>
</table>

$r > .70$

Compared to Zraick et al. (2011):
- $=$ breathiness e e loudness;
- $>$ overall severity; strain and pitch;
- $<$ roughness.
Study limitations:

• Related with:
 ▪ Listeners with > 5 years of clinical experience in voice disorders;
Study limitations:

- Related with:
 - Listeners with > 5 years of clinical experience in voice disorders;
 - Non anchor stimuli before rating sessions.
Future research:

- Study the impact of listeners experience in the II EP CAPE-V psychometric characteristics;
Future research:

• Study the impact of listeners experience in the II EP CAPE-V psychometric characteristics;

• Study the impact of the stimulus type: auditory-visual vs auditory solo in the strain parameters rating;
Future research:

- Study the impact of listeners experience in the II EP CAPE-V psychometric characteristics;
- Study the impact of the stimulus type: auditory-visual vs auditory solo in the strain parameters rating;
- Study the sensibility of each II EP CAPE-V phonatory task.
VI. CONCLUSION
• II EP CAPE-V is a valid and reliable instrument for auditory-perceptual voice evaluation of EP language;

• This study established content, construct and concurrent validity, as well as inter- and intra-rater reliability of the II EP CAPE-V.
ACKNOWLEDGMENTS

Ana P. Mendes, Ph.D.
Gail B. Kempster, Ph.D.

Fernando Martins, Ph. D.

Margarida Lemos, Ph.D.
Mª Fátima Salgueiro, Ph.D.

Soraia Ibrahim
Família e amigos

Dr. António Larroude
Dra. Sara Viana Baptista
Dra. Rita Ferreira

Lisa C. e Silva
Mónica C. e Silva
Carlos Ibrahim

19 SLTs:

Aira Rodrigues
Ana Paula Almeida
David Guerreiro
Elisabete Afonso
Inês Moura
Joana Assunção
João Fartaria
Leonor Fontes
Luísa P. Nobre
Mafalda Almeida

Mª Filomena Gonçalves
Mariana Moldão
Mariana Pinheiro
Miriam Moreira
Rosa Henriques
Sónia Lima
Soraia Ibrahim
Tânia Constantino
Teresa Rosado
THANK YOU VERY MUCH!!!

scalmeida@hospitaldaluz.pt

