MEDIDAS DE COMBATE À POLUIÇÃO MARÍTIMA – TENDÊNCIAS E LIÇÕES APREENDIDAS.

Pedro Manuel C. dos Santos Jorge
Capitão-tenente
PEDRO MANUEL C. DOS SANTOS JORGE

CAPITÃO-TENENTE

TRABALHO DE INVESTIGAÇÃO INDIVIDUAL

LISBOA 2011
PEDRO MANUEL C. DOS SANTOS JORGE

CAPITÃO-TEMPENTE

MEDIDAS DE COMBATE À POLUIÇÃO MARÍTIMA.
TENDÊNCIAS E LIÇÕES APREENDIDAS

Trabalho de Investigação Individual

ORIENTADOR: CAPITÃO-TEMPENTE RODRIGUES VICENTE

LISBOA 2011
Agradecimentos

Este trabalho não teria sido possível sem as valiosas sugestões, críticas construtivas e apoio do capitão-tenente Rodrigues Vicente, nosso orientador e amigo, e a quem expressamos os sinceros agradecimentos pela disponibilidade, apoio, ideias, incentivo e principalmente paciência demonstrada. Igualmente expressamos um sincero reconhecimento e agradecimento ao Capitão-de-Mar-e-Guerra, Engenheiro de Construção Naval, Silva Paulo, pela contínua disponibilidade, apoio prestado e inexcedível camaradagem, manifestada através das várias conversas que conosco teve, sempre na prossecução da melhoria do nosso trabalho, mostrando-nos a realidade da problemática em questão, através dos seus experientes olhos. Ao Vice-almirante Saldanha Carreira, pela sua disponibilidade e apoio manifestado, ao Capitão-de-Fragata, Engenheiro Naval Ramo Mecânica, Carmo Limpinho, pela ideia inicial de encaminhar o nosso estudo em direcção à problemática das HNS. Ao meu pai, pelo contínuo apoio, auxílio e permanente disponibilidade.

Finalmente, à Inês, pela compreensão demonstrada em não usufruir de mais tempo passado com o pai, e a que tem sempre todo o direito.

A todos um grande bem-haja.
Índice

Agradecimentos ..I
Índice .. II
Resumo .. IV
Abstract .. V
Palavras-chave ... VI
Lista de siglas e abreviaturas .. VII
Introdução .. 1
 1. Enquadramento .. 6
 a. Enquadramento Conceptual ... 6
 a (1). Conceito de Ameaça .. 9
 a (2). Conceito de Risco ... 10
 b. Enquadramento Situacional ... 11
 c. Enquadramento Legislativo .. 13
 c (1). Enquadramento Legal Nacional ... 13
 c (2). Enquadramento Legal Internacional .. 13
 d. Enquadramento Organizacional ... 19
 2. Estado da Arte no Combate à Poluição Marítima 23
 a. Planos de Intervenção ... 23
 b. O Caso das HNS ... 25
 c. Modelo Actual de Resposta – Análise SWOT .. 27
 3. Poluição Marítima - HNS ... 32
 a. Propriedades das HNS .. 32
 b. Avaliação de Risco .. 33
 c. Opções na tomada de decisão (Medidas de resposta) 35
 d. Casos-tipo ... 37
 4. Contributos .. 40
Conclusões .. 43
Referências Bibliográficas .. 45
TABELAS
Tabela 1: Principais incidentes de derrames ocorridos em Portugal.......................... 25
Tabela 2: Ambiente Externo ... 27
Tabela 3: Ambiente Interno .. 28
Tabela 4: Matriz SWOT .. 30
Tabela 5: Grupos de Comportamento de HNS ... 31
Tabela 6: Exemplos de Medidas de Resposta .. 35

FIGURAS
Figura 1: Diagrama de Avaliação de Riscos .. 33
Figura 2: Diagrama de decisão .. 34

APÊNDICES
Apêndice 1 – Lista de convenções afectas à poluição do meio marinho.................. A-2
Apêndice 2 – Proposta de PI dedicado à poluição derivada de HNS A-9
Apêndice 3 – Resumo da entrevista efectuada ao VALM Silva Carreira A-22
Resumo

Este Trabalho de Investigação Individual estuda as linhas orientadoras no combate à poluição marítima em Portugal. Para este efeito, é efectuado um enquadramento a nível conceptual, definindo e caracterizando a poluição do meio marinho, um enquadramento a nível situacional, definindo a abrangência do seu impacto, nomeadamente as suas causas e os seus efeitos, um enquadramento legislativo mencionando as principais convenções internacionais e a legislação nacional relativas à poluição do mar e finalmente um enquadramento organizacional, definindo a organização nacional para o combate à poluição do mar. Seguidamente são estudados e analisados os mais recentes conceitos e doutrina de prevenção e combate à poluição do meio marinho, correlacionando-os com a situação actual a nível nacional. Recorrendo à análise de exemplos de ocorrências de poluição, à consulta de bases de dados de lições apreendidas e à análise do modelo actual de resposta do nosso país em situações de ocorrência de poluição marítima, retiraram-se as ilações e conclusões possíveis sobre a efectividade do modelo nacional de combate à poluição marítima. No capítulo seguinte, e com as conclusões obtidas anteriormente, é proposto um plano de intervenção nacional para situações de derrame no mar, de substancias que não hidrocarbonetos (HNS). Finalmente, conclui-se este estudo com as conclusões retiradas sobre o modelo de combate à poluição do meio marinho, que consideramos adequado para a realidade nacional.
Abstract

This essay studies the research guidelines for combating pollution of the maritime environment in Portugal. For this purpose, there will take place a conceptual framework, defining and characterizing pollution of the maritime environment, a situational framework, defining the scope of its impact, including its causes and its effects, a legislative framework specifying the major international conventions and national legislation concerning the pollution of the sea and finally an organizational framework, defining the national organization to handle sea pollution occurrences. Flowingly, the latest international concepts and doctrine for preventing and combating pollution of the maritime environment are studied and analyzed, and associated with the current situation at a national level. Using some examples of pollution incidents, databases of learned lessons and the analysis of the current national model of response in case of an occurrence of maritime pollution, we aim to conclude about the effectiveness of the national model to combat marine pollution. In the following chapter, and with the conclusions previously obtained, we propose a national plan of action for situations of substances other than hydrocarbons, defined as Hazardous and Noxious Substances (HNS) spilled into the sea. Finally, this study is concluded with the conclusions drawn on the model for combating pollution of the marine environment, which we consider appropriate to the national reality.
Palavras-chave

- Ameaça
- Hazardous and Noxious Substances (HNS)
- Hidrocarbonetos
- Lições apreendidas
- Medidas de combate à poluição
- Métodos de combate à poluição
- Meio marinho
- Plano de intervenção
- Plano de contingência
- Poluição marítima
- Risco
Lista de siglas e abreviaturas

<table>
<thead>
<tr>
<th>Sigla</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMN</td>
<td>Autoridade Marítima Nacional</td>
</tr>
<tr>
<td>ANPC</td>
<td>Autoridade Nacional de Protecção Civil</td>
</tr>
<tr>
<td>CEDN</td>
<td>Conceito Estratégico de Defesa Nacional</td>
</tr>
<tr>
<td>CEDRE</td>
<td>Centre de Documentation, de Recherche et D'expérimentations sur les Pollutions Accidentelles des Eaux</td>
</tr>
<tr>
<td>CEMA</td>
<td>Chefe do Estado-Maior da Armada</td>
</tr>
<tr>
<td>CEMGFA</td>
<td>Chefe do Estado-Maior-General das Forças Armadas</td>
</tr>
<tr>
<td>CGPM</td>
<td>Comandante-Geral da Polícia Marítima</td>
</tr>
<tr>
<td>CNUDM</td>
<td>Convenção das Nações Unidas sobre o Direito do Mar</td>
</tr>
<tr>
<td>DCPM</td>
<td>Direcção de Combate à Poluição do Mar</td>
</tr>
<tr>
<td>DGAM</td>
<td>Direcção Geral da Autoridade Marítima</td>
</tr>
<tr>
<td>DL</td>
<td>Decreto-lei</td>
</tr>
<tr>
<td>DM</td>
<td>Despacho ministerial</td>
</tr>
<tr>
<td>EPI</td>
<td>Equipamento de Protecção Individual</td>
</tr>
<tr>
<td>ECN</td>
<td>Engenheiro de Construção Naval</td>
</tr>
<tr>
<td>EEIN</td>
<td>Espaço Estratégico de Interesse Nacional</td>
</tr>
<tr>
<td>EMSA</td>
<td>European Maritime Security Agency</td>
</tr>
<tr>
<td>EN-MEC</td>
<td>Engenheiro Naval – Ramo Mecânica</td>
</tr>
<tr>
<td>FFAA</td>
<td>Forças Armadas</td>
</tr>
<tr>
<td>GNR</td>
<td>Guarda Nacional Republicana</td>
</tr>
<tr>
<td>HC</td>
<td>Hidrocarbonetos</td>
</tr>
<tr>
<td>HELCOM</td>
<td>Helsinki Commission</td>
</tr>
<tr>
<td>HNS</td>
<td>Hazardous and Noxious Substances</td>
</tr>
<tr>
<td>IMO</td>
<td>International Maritime Organization</td>
</tr>
<tr>
<td>INEM</td>
<td>Instituto Nacional de Emergência Médica</td>
</tr>
<tr>
<td>IPIECA</td>
<td>International Petroleum Industry Environmental Conservation Association</td>
</tr>
<tr>
<td>ISN</td>
<td>Instituto de Socorros a Náufragos</td>
</tr>
<tr>
<td>LOMAR</td>
<td>Lei Orgânica da Marinha</td>
</tr>
<tr>
<td>MDN</td>
<td>Ministério da Defesa Nacional</td>
</tr>
<tr>
<td>NATO</td>
<td>North Atlantic Treaty Organization</td>
</tr>
<tr>
<td>OCA</td>
<td>Operational Control Authorities</td>
</tr>
<tr>
<td>OECD</td>
<td>Organisation for Economic Cooperation and Development</td>
</tr>
<tr>
<td>ONU</td>
<td>Organização das Nações Unidas</td>
</tr>
<tr>
<td>OPRC</td>
<td>Oil Preparedness, Response and Cooperation</td>
</tr>
<tr>
<td>OSC</td>
<td>On-Scene Coordinators</td>
</tr>
<tr>
<td>PML</td>
<td>Plano Mar Limpo</td>
</tr>
<tr>
<td>PSP</td>
<td>Polícia de Segurança Pública</td>
</tr>
<tr>
<td>RCM</td>
<td>Resolução do Conselho de Ministros</td>
</tr>
<tr>
<td>REMPEC</td>
<td>Regional Marine Pollution Emergency Response Centre</td>
</tr>
<tr>
<td>SAM</td>
<td>Sistema de Autoridade Marítima</td>
</tr>
<tr>
<td>SCPMH</td>
<td>Serviço de Combate à Poluição no Mar por Hidrocarbonetos</td>
</tr>
<tr>
<td>SWOT</td>
<td>Strengths, Weaknesses, Opportunities and Threats</td>
</tr>
<tr>
<td>ZEE</td>
<td>Zona Económica Exclusiva</td>
</tr>
</tbody>
</table>
Introdução

O trabalho de investigação individual proposto com o tema “Medidas de combate à poluição marítima – tendências e lições apreendidas,” enquadrado no Curso de Estado-Maior Conjunto e no caráter interdisciplinar das matérias nele tratadas, revela-se actual, possuindo um carácter bastante relevante, face aos impactos ambientais, económicos e sociais, que decorrem da ocorrência de poluição no meio marinho, para todos os Estados costeiros.

A poluição marítima é, na actualidade, uma preocupação a nível mundial sendo que a consciência e sensibilidade para as questões ambientais por parte da opinião pública, tem aumentado nos últimos anos, fruto do acentuar de problemas, da ocorrência de várias de catástrofes ambientais e principalmente, fruto de uma maior cobertura destes assuntos por parte da comunicação social.

Portugal subscreveu várias convenções sobre os assuntos do mar, relacionadas em maior ou menor grau com o Combate à Poluição no Mar, sendo uma das mais relevantes a convenção MARPOL1. Esta convenção, datada inicialmente de 1973, estabelece um conjunto de regras com o objectivo de “alcançar a eliminação completa da poluição intencional do meio marinho por hidrocarbonetos e outras substâncias prejudiciais, bem como a minimização de descargas acidentais de tais substâncias”.

No ano de 1987, com a criação da Lei de Bases do Ambiente enunciava-se que os novos conceitos de protecção e preservação do meio marinho e de combate à poluição naquele meio deveriam radicar numa proibição genérica de toda a actividade humana que nele introduza qualquer substância, organismo ou energia, desde que provocasse efeitos susceptíveis de fazer perigar a saúde humana, os ecossistemas e os recursos vivos, bem como prejudicar as demais legítimas utilizações do mar.

1 Convenção Internacional para a Prevenção da Poluição por Navios, 1973/78.
2 Comissão Nacional contra a Poluição do Mar.
3 The International Convention on Oil Preparedness, Response and Cooperation, 1990.
necessidade de ser criado um plano de contingência nacional4 de prevenção e resposta a situações de poluição do meio marinho, denominado Plano Mar Limpo5 (PML).

Na generalidade, a poluição marítima poderá ser dividida em duas categorias, de acordo com a sua causa ou origem. Referimo-nos aos derrames por hidrocarbonetos (HC) ou derrames de outras substâncias perigosas, que não os hidrocarbonetos, e que neste trabalho de investigação assumem a sua denominação internacional, HNS6. O impacto de um derrame de hidrocarbonetos ou de HNS, a nível mundial, da UE7 em geral e a nível nacional em particular, pode ser extremamente significativo, implicando um enorme dispêndio de recursos na sua prevenção e se necessário combate, tanto financeiros e humanos bem como materiais. Este dispêndio de recursos decorre das implicações que incidentes de poluição desta natureza poderão ter para a sociedade, a nível da saúde pública, ao nível ambiental e ao nível económico, com possíveis e normalmente usuais danos gravosos.

Em cumprimento com o estipulado no anteriormente referido PML, que se constitui como o plano de contingência nacional de resposta em vigor para estas matérias, (cujo objectivo é o estabelecimento de um dispositivo de resposta a situações de derrames de hidrocarbonetos e outras substâncias perigosas (HNS), ou a situações de ameaça iminente desses mesmos derrames, definindo as responsabilidades das entidades intervenientes e fixando as competências das autoridades encarregadas da execução das tarefas que aquela resposta comporta), pretende-se neste trabalho de investigação estudar a organização nacional de resposta a situações de combate à poluição do mar, contextualizando-a com os exemplos de outros países e com o evoluir das medidas e técnicas entretanto desenvolvidas, de modo a elaborar da sua actualidade e efectividade.

Perante a abrangência que o tema encerra, torna-se necessário sublinhar que este Estudo tem como objectivo o averiguar e identificar de quais as actuais medidas e métodos

4 De acordo com a doutrina NATO (AJP-5, 2009:1-3), um Plano de Contingência, (Contingency Plan) é o designado para prever ou prever uma ameaça ou risco futuro. Este tipo de plano é baseado em assunções e necessitará de revisão e desenvolvimento face à materialização das referidas situações de risco ou ameaças. Para os efeitos deste estudo, consideramos como Planos de Contingência os planos de preparação e previsão de resposta a ocorrências de poluição marítima, com o objectivo de minimizar os danos associados, que definem a estrutura organizacional, os procedimentos e os recursos disponíveis para resposta a esses incidentes e determinam responsabilidades, estabelecendo uma estrutura organizacional nacional, definindo directrizes para a actuação coordenada dos órgãos do Poder Público e entidades privadas em incidentes de poluição por hidrocarbonetos ou HNS que possam afectar as águas sob jurisdição nacional.

5 Plano Mar Limpo - Plano de Emergência para o Combate à Poluição das Águas Marinhas, Portos, Estuários e Trechos Navegáveis dos Rios, por Hidrocarbonetos e Outras Substancias Perigosas, 1993.

6 HNS: Hazardous and Noxious Substances.

7 União Europeia.
adequados de combate à poluição no meio marítimo, em consonância com as convenções promovidas pela IMO\(^8\) e acordos assinados no âmbito da EMSA\(^9\), às quais Portugal aderiu. Seguidamente e de acordo com a análise efectuada, propomo-nos a retirar as devidas conclusões das diversas lições que entretanto foram identificadas e apreendidas, tanto a nível internacional como ao nível nacional, para em seguida, estruturar e propor alterações aos planos de intervenção nacionais. De referir que, face à relativamente recente doutrina europeia da EMSA (2007) sobre as HNS, aliada à grande importância deste assunto, será dado um especial enfoque a estas substâncias e às inerentes medidas e métodos de combate à poluição, que esta categoria de poluição marítima poderá implicar, na eventualidade de um derrame no mar.

Tencionamos assim, contribuir desta forma com um novo “olhar” sobre os planos nacionais vigentes de intervenção, relativos ao derrame de substâncias nocivas no meio marinho, em cumprimento com o estipulado no PML, exceptuando deste estudo as ocorrências de poluição com substâncias radioactivas, uma vez que estas não fazem parte deste plano.

Julgamos assim adequado e numa perspectiva de aproximação ao problema, orientar o estudo com os seguintes objectivos de investigação:

- **Identificar quais as medidas e métodos mais acutais de combate à poluição do mar causadas por derrames de HNS, com exceção dos casos que envolvam substâncias radioactivas;**

- **Descrever o Estado da Arte da estratégia nacional de combate à poluição do mar, com especial enfoque para as HNS;**

- **Contribuir para a actualização dos planos nacionais de intervenção, no que diz respeito à prevenção e combate da poluição causada por HNS.**

Para dar resposta ao tema do trabalho, “**Medidas de combate à poluição marítima – tendências e lições apreendidas**”, e de acordo com a delimitação do estudo anteriormente referida e a actividade inicial de pesquisa efectuada, foi construído um modelo de investigação baseado na seguinte Questão Central (QC):

QC – Qual o modelo de combate à poluição do meio marinho adequado à realidade actual?

Enquadrando a Questão Central, e de forma a responder à mesma, surgem-nos as seguintes Questões Derivadas (QD):

\(^8\) *International Maritime Organization.*

\(^9\) *European Maritime Safety Agency.*
QD1 – Poderemos definir a poluição do meio marinho como uma ameaça ou como um risco para a comunidade internacional?
QD2 – Existem planos de intervenção nacionais de combate à poluição, adequados para todas as substâncias passíveis de ser derramadas no mar, que originem focos e situações de poluição?
QD3 – Quais as lições apreendidas nesta área que contribuirão para o enriquecimento dos planos de intervenção nacionais?

O presente trabalho de investigação procura encontrar respostas para as perguntas formuladas, pretendendo-se no final desta pesquisa poder confirmar ou refutar as seguintes hipóteses (H) orientadoras do Estudo:

H1 – A poluição do meio marinho é uma ameaça e um risco global.
H2 – Em Portugal existem todos os necessários planos de intervenção de combate à poluição marítima.
H3 – Afigura-se necessária a criação de um plano de intervenção dedicado a situações de derrames por HNS.

O percurso metodológico foi organizado segundo duas etapas temporais. Inicialmente, procedeu-se a um levantamento, análise e avaliação de dados, de modo a possibilitar um enquadramento e contextualização no estudo e a revisão de conceitos. Privilegiaram-se os diplomas legais, os artigos técnicos e operacionais de referência em sítios na Internet, e a doutrina vigente que se encontra relacionada. Posteriormente, complementou-se a investigação bibliográfica com base em entrevistas. Pretendeu-se contactar entidades que, pela sua experiência relacionada com a temática em estudo, constituissem um contributo para responder aos objectivos centrais do presente trabalho, e de onde destacamos o Vice-almirante Silva Carreira, Director-Geral da Autoridade Marítima, o Capitão-de-Mar-e-Guerra ECN Silva Paulo, ex-Chefe do Serviço de Combate à Poluição do Mar por Hidrocarbonetos e o Capitão-de-fragata EN-MEC Carmo Limpinho, adjunto do Chefe do Serviço de Combate à Poluição do Mar por Hidrocarbonetos, sendo que nos dois últimos casos, não foram efectuadas entrevistas formais, mas apenas conversas sobre o tema. Apresentamos no apêndice n.º 1 do nosso trabalho o extracto da entrevista realizado ao Vice-almirante Silva Carreira.

Apresentando então este trabalho, e após a introdução ao tema, concretizamos no capítulo primeiro do nosso Estudo, um enquadramento a nível conceptual, situacional, legislativo e organizacional. Pretendemos assim definir e caracterizar a poluição do meio marinho, expondo a abrangência do seu impacto mundial, tendo como base de análise as
principais convenções internacionais e a legislação nacional relativas à poluição do mar. Ainda neste capítulo, pretendemos enquadrar e definir a organização nacional para o combate à poluição do mar. Seguidamente, no capítulo dois, apresentamos a realidade nacional no que ao combate à poluição do mar diz respeito, analisando em particular o caso das HNS. Para este efeito elaborámos uma análise SWOT10 ao modelo de resposta existente, com vista a concluir da necessidade, ou não, de melhoria dos planos existentes.

No terceiro capítulo particularizamos a poluição derivada por HNS, indicando as suas características intrínsecas e os riscos que lhes estão associados, bem como as medidas e métodos de resposta mais adequados. Efectuaremos também a análise de alguns exemplos de casos tipo, tanto nacionais como internacionais, para no capítulo seguinte, apresentarmos como contributo, uma proposta de plano de intervenção dedicado ao combate à poluição derivada de HNS. Terminamos com as conclusões por nós obtidas no decorrer deste trabalho de investigação individual.

10 Strengths, Weaknesses, Opportunities and Threats.
1. **Enquadramento**

a. **Enquadramento Conceptual**

A Convenção das Nações Unidas sobre o Direito do Mar de 1982, definiu no seu artigo primeiro, poluição marinha como a “introdução pelo homem, directa ou indirectamente, de substâncias e energia no meio marinho, incluindo os estuários, sempre que a mesmo provoque ou possa vir a provocar efeitos nocivos, tais como danos aos recursos vivos e à vida marinha, riscos à saúde do homem, entrave às actividades marítimas, incluindo a pesca e as outras utilizações legítimas do mar, alteração da qualidade da água do mar, no que se refere à sua utilização e deterioração dos locais de recreio”.

Na sequência da definição supra exposta, o termo poluição poderá ser entendido como a introdução no meio ambiente de qualquer matéria que venha a alterar as propriedades físicas, químicas ou biológicas desse meio, afectando de forma mais ou menos grave a saúde das espécies animais ou vegetais que dele dependem e consequentemente a saúde humana. Mais especificamente, quando nos referimos à poluição do mar, deveremos incluir os recursos inerentes ao meio marinho, sejam eles alimentares, energéticos e ainda o legítimo uso do mesmo meio pelo Homem. Esta definição poderá, no entanto, pecar por ser insuficientemente abrangente, na medida em que, para além das responsabilidades atribuídas ao Homem, deverá também ser considerada a poluição originada por fenómenos naturais. Com efeito, a poluição poderá igualmente ocorrer sob o efeito de causas naturais, sendo disto exemplo os vulcões submarinos, que podem determinar uma poluição química, fendas no fundo do mar que originem derrames espontâneos de hidrocarbonetos ou ainda o desenvolvimento súbito e explosivo de certas espécies marinhas que possam provocar a morte de outras espécies, e que naturalmente não derivam directamente do Homem (SOUZA, 1982: 972)\(^\text{11}\).

O conceito de um oceano infinitamente grande há muito que deixou de existir e a noção de um oceano capaz de “engolir” tudo o que se deita lá para dentro está em vias de desaparecer, embora ainda persista a tendência para se julgar que o mar tudo pode diluir (SOUZA, 1982: 974)\(^\text{12}\). Desde a década de 1930 que em todo o mundo, e a um ritmo visivelmente crescente, têm sido efectuados estudos sobre o mar com a utilização de navios

\(^{11}\) Optámos por utilizar esta referência, ainda que datada de 1982, dada a sua actualidade relativamente à problemática em questão.

\(^{12}\) Idem.
oceanográficos, equipados com laboratórios dedicados a este tipo de investigações científicas. Desde então, e face ao contínuo aparecimento de novos equipamentos tais como sonares e aparelhos de fotografia submarina cada vez mais precisos e dispositivos de colheita de amostras de água a grandes profundidades, provou-se que em muitas situações e locais já se atingiu o ponto de ruptura, como sejam o desaparecimento de espécies marínicas, incluindo aves, ou ainda o total desaparecimento de qualquer vestígio de vida, efeitos estes, que estão directamente relacionados com a acção do Homem e não com a dinâmica dos fenómenos da evolução natural.

A poluição de uma determinada zona será, geralmente, o efeito de um conjunto de poluentes, sendo que a poluição “visível” a olho nu, como por exemplo a derivada de derrames de hidrocarbonetos, é a que origina um maior impacto mediático. Na generalidade podem-se elencar várias causas para a ocorrência da poluição do mar proveniente da acção humana, como a reestruturação da linha de costa, a construção de molhes e espigões, turismo em massa, actividades recreativas, edificação sobre as dunas e, também, modificação no curso do regime dos rios e acumulação de pessoas no litoral (de acordo com dados recolhidos, estima-se que quarenta por cento da população mundial viva nas proximidades da regiã litoral e que essa percentagem esteja em franco crescimento) (ONU, 2008: 29) e (INE, 2010: 43). Todos estes factores podem de diferentes maneiras e podem, de maneira geral, ser agrupados em grandes categorias seguindo a natureza predominante, podendo ser de origem química (sais nutritivos em excesso e substâncias tóxicas), de origem biológica (micróbios das águas utilizadas e espécies invasoras trazidas pelas correntes proliferando inadequadamente) e de origem física (poluição petrolífera, poluição química, poluição térmica) (MTAMN-1, 2007: 2.4).

De um modo geral, podemos concluir, pelo óbvio, que a ocorrência de derrames, sejam de petróleo e seus derivados (HC) ou sejam de quaisquer outras substâncias químicas (HNS), causarão danos, sendo de esperar que alguns sejam irreversíveis, ao ambiente. Como prevenção básica, considera-se que a maior incidência de derrames no mar tem origem nas seguintes fontes (MTAMN-1, 2007: 2.3):

- Sinistros marítimos, tais como encalhes, afundamentos, explosões, rombos e colisões entre navios que transportem hidrocarbonetos ou outras substâncias químicas perigosas, além do combustível próprio;
- Descarga de águas oleosas de porões, de lavagem de tanques de carga e lastro de navios;
Derrames em operações de trasfego de hidrocarbonetos entre navios, e através de barcaças;

- Efluentes industriais e urbanos;
- Derrames de campos de exploração petrolífera situados no mar (off-shore);
- Precipitação de hidrocarbonetos que se tenham evaporado para a atmosfera;
- Modificação no regime dos rios e nas cargas poluentes por eles transportadas.

As estimativas do total de produtos petrolíferos, derramados no meio marinho, com origem em diferentes fontes, são da ordem de 2 a 6 milhões de toneladas por ano. Ao contrário da noção que por vezes se tem, a maior contribuição poluidora provém de fontes de origem terrestre, em especial de resíduos industriais citadinos. Os hidrocarbonetos provenientes dos derrames dos navios, em conjunto com os derramados pelas actividades da exploração off-shore, dão uma estimativa de 0,47 milhões de toneladas, as quais são relativamente pequenas quando comparadas com o total derramado (IMO, 2009: 29-31).

Os desastres sensacionais como os grandes derrames de hidrocarbonetos no mar, constituem normalmente notícia nos meios de comunicação social, contribuindo decisivamente para que os problemas relacionados com a poluição tenham vindo desde há alguns anos, a sensibilizar a opinião pública. No entanto, os perigos da poluição “discreta” que constituem os derrames de HNS e que não dão origem à cobiça dos órgãos de comunicação social pela falta de imagens esclarecedoras e eventualmente chocantes, continuam a ser algo minimizados, podendo ser, no entanto, muito mais danosos para o meio marinho que os provocados por derrames de hidrocarbonetos. Os riscos de afectar a saúde pública e os seus consequentes impactos, assim como as medidas de resposta e combate a situações de derrames, são potencialmente mais severas no caso dos HNS do que no caso dos hidrocarbonetos, face ao largo espectro de perigos intrínsecos, derivados de um muito alargado conjunto de características e propriedades físicas que podem causar diversos impactos negativos no meio marinho. Estes factos, permitem-nos afirmar que uma das principais diferenças entre os derrames de hidrocarbonetos e de HNS é o facto de que a recolha e limpeza destas últimas caso seja muitas vezes impossível. Isto acontece em virtude das características físicas bastante variadas que as HNS podem ter (por exemplo, poderão ser líquidas ou mesmo gasosas), implicando dificuldades acrescidas nas operações de combate à poluição provocada por estas substâncias.

Um derrame de hidrocarbonetos ou de HNS, por menor que seja, tem geralmente consequências negativas, dada a entrada no meio marinho de substâncias que lhe são estranhas. Estas consequências são principalmente importantes a nível ambiental e...
económico. A extensão dos efeitos de um acidente deste tipo depende de um conjunto de factores agravantes, como por exemplo, o volume e propriedades do produto derramado, condições meteorológicas durante o derrame (vento, correntes, a agitação do mar, etc.), época do ano, sensibilidade do local, tipo de medidas de combate implementadas, etc.

(1). **Conceito de Ameaça**

Podemos definir ameaça como qualquer acontecimento ou acção (em curso ou previsível), de natureza variada e proveniente de uma vontade consciente que contraria a consecução de um objectivo de outrem e que, por norma, é causador de danos, materiais ou morais, sendo que no âmbito da estratégia se consideram principalmente as ameaças provenientes de uma vontade consciente, analisando o produto das possibilidades pelas intenções (COUTO, 1988: 329), resultando desta definição que se excluem os fenómenos naturais do âmbito das ameaças. Podemos desta forma dizer que, determinada situação constitui uma ameaça se o seu autor tiver a possibilidade ou capacidades para a sua concretização bem como se também tiver intenções de a provocar. A ameaça será assim estruturalmente identificável, podendo sempre ser considerada um acto ofensivo ou um indicador antecipado da agressão, que pode surgir a qualquer momento e que não se dissipa quando essa agressão se concretiza (ESCORREGA, 2009:9).

Para a ONU, e conforme o exposto num painel realizado sob o tema da segurança “A more secure world: Our shared responsibility”, uma ameaça será entendida como “qualquer acontecimento ou processo que cause mortes em grande escala, uma redução maciça das expectativas de vida ou que enfraqueça o papel do Estado como unidade básica do sistema internacional” (ONU, 2004:2). Este conceito permite a inclusão das consideradas ameaças não tradicionais à segurança, com implicações graves, como é o caso das catástrofes naturais ou da ocorrência de fenómenos de poluição, dadas as consequências negativas que serão de esperar para qualquer Estado onde ocorram fenómenos de poluição, sejam derivados de causas naturais ou derivados da acção humana.

Em Portugal, o Conceito Estratégico de Defesa Nacional (CEDN), aprovado em 2003, define a constituição do Espaço Estratégico de Interesse Nacional (EEIN), incluindo neste conceito o espaço marítimo sob jurisdição nacional. Neste âmbito, são identificadas as quatro ameaças ao país que se considera mais significativas (Terrorismo, Criminalidade Organizada, Proliferação de ADM e Ameaças Ambientais). Contudo, e tomando como base a definição de ameaça introduzida no início deste parágrafo, assumimos como correcta a hipótese de a poluição não dever ser definida como uma ameaça. Imaginemos
que um movimento terrorista desvia um navio de transporte de hidrocarbonetos e o faz intencionalmente colidir com uma instalação portuária, originando deste modo um derrame de grandes dimensões. Deste exemplo podemos concluir, com base na definição inicialmente proposta, que a ameaça estaria efectivamente consubstanciada na acção dos terroristas, e não na poluição propriamente dita. A ameaça será então a consequência das suas acções.

Do acima exposto, verificámos que diferentes abordagens e consequentes definições do conceito de ameaça poderão ser utilizadas. Para efeitos deste estudo, assumiremos então, que ao conceito de ameaça esteja associada uma vontade consciente, ou seja, uma intencionalidade de um autor aliada à sua possibilidade e capacidade de agir, e desta forma, utilizando esta mesma premissa, não incluiremos a poluição do meio marinho no âmbito das ameaças.

(2). Conceito de Risco

De acordo com a doutrina das forças armadas britânicas (JWP 5-00, 2004:2D-1), corroborada com a definição das forças armadas norte-americanas (JP 5-0, 2006:C-2), a definição de risco será a hipótese em termos quantitativos de um determinado perigo ocorrer, dada pela probabilidade desse mesmo perigo acontecer e as consequências que daí resultarem. Desta forma, podemos então definir risco através da seguinte fórmula:

\[
\text{Risco} = (\text{Probabilidade de Ocorrência do Perigo}) \times (\text{Consequências})
\]

No âmbito da ONU (Estratégia Internacional para a Redução de Desastres), o risco é definido como a “probabilidade de consequências prejudiciais, ou perdas esperadas (…) resultante de interacções entre perigos\(^{13}\) naturais ou humanamente induzidos e condições vulneráveis”.

A probabilidade será obtida através do número de ocorrências sobre o total de observações de uma determinada situação. As consequências serão determinadas pelos danos em caso de ocorrência, medidos em número de vidas perdidas, metros quadrados de área afectada, peso de pescado morto, anos para repor a situação inicial, ou outra qualquer medida importante para o local onde ocorra o acidente.

Podemos também considerar, que um risco implica uma acção não directamente intencional e eventualmente sem carácter intrinsecamente hostil (ESCORREGA, 2009:9).

\(^{13}\) Perigo: Acontecimento potencialmente danoso fisicamente, actividade humana ou fenómeno que pode causar a perda de vidas humanas (…), rupturas económicas e sociais ou a degradação ambiental. Estratégia internacional para a redução de desastres/ONU.
Como um exemplo desta definição, poderemos imaginar um navio transportando substâncias químicas que por acidente sofra um rombo no seu casco, originando um derrame dessas mesmas substâncias. Isto implicará que se conclua que esta ocorrência seria derivada do acaso ou de uma falha humana, mas não possuindo um carácter intencional. Os acasos ou falhas (humanas ou técnicas), associados à probabilidade de ocorrer, e naturalmente às consequências que lhes estão afectas, definirão o risco inerente ao transporte de substâncias perigosas pela via marítima.

Como consequência do supra exposto, e para efeitos deste estudo, incluiremos a poluição do meio marinho no âmbito da definição de risco, respondendo desta forma à primeira questão derivada. Esta questão indaga sobre se poderemos assumir a poluição do meio marinho como uma ameaça ou como o risco para a comunidade internacional. Com efeito, verificámos que a primeira hipótese não poderá ser validada na sua totalidade, dado que concluímos pela inclusão do termo poluição no âmbito da definição de risco e não no âmbito da definição de ameaça.

b. **Enquadramento Situacional**

A vida no planeta depende do mar, imensa fonte abastecedora de energia e de água, suporte da sobrevivência de centenas de milhões de pessoas e um dos principais estabilizadores do clima. As massas de água dos oceanos absorvem a energia do Sol e comportam-se como um reservatório térmico, tendo, por isso, um papel determinante na estabilidade meteorológica. O aquecimento global do planeta está a provocar a subida do nível das águas do mar, a aumentar a frequência e a intensidade das tempestades, a alterar a localização e a abundância dos pesqueiros, e a perturbar os ecossistemas costeiros. Sendo a principal força motriz do clima mundial, os oceanos têm uma importância fundamental no bem-estar presente e futuro da população mundial. Apesar da evidência destes factos, o Homem continua a despejar nos oceanos produtos extremamente nocivos para os ecossistemas marinhos, como são os hidrocarbonetos, os pesticidas, os metais pesados, e outros compostos danosos para a estabilidade da vida no meio marinho. (RIBEIRO, 2008: 70). Dos vários milhões de produtos químicos utilizados para diferentes fins, a maioria termina nos oceanos ou seja, 77% da poluição marinha tem origem em terra (CMIO, 1998: 26). Todavia, a situação de crise que afecta os oceanos, como refere o relatório da Comissão Mundial Independente para os Oceanos, “não pode ser considerada isoladamente dos muitos problemas que afectam a terra e a atmosfera. Na realidade, eles formam, em conjunto, grande parte da problemática da biosfera, onde as questões do mar se ligam às
Medidas de Combate à Poluição Marítima – Tendências e Lições Aprendidas

questões da terra, através dos rios, da atmosfera e da zona costeira. Conjuntamente, englobam-se num quadro mais vasto, que liga a utilização dos recursos ao bem-estar das gerações futuras e, em última análise, às perspectivas de sobrevivência humana” (RIBEIRO, 2008: 70). À medida que estas perspectivas se forem degradando, as ciências e as tecnologias ligadas aos oceanos, tornar-se-ão cada vez mais relevantes na preservação ambiental, porque permitirão: evidenciar e reduzir os impactos das actividades humanas sobre o mar e as zonas costeiras; fomentar o conhecimento marítimo e partilhar informações; satisfazer racionalmente as necessidades básicas de uma população em rápido crescimento.

A explosão do crescimento das cidades costeiras, o rápido aumento do turismo, a industrialização acelerada e a expansão da piscicultura são factores que intensificam uma pressão negativa sobre as zonas costeiras do planeta. Estes fenómenos são responsáveis pelo descontrolado aumento da poluição do meio maríno, que advém principalmente das indústrias costeiras, dos sistemas de drenagem de esgotos, e de poluentes transportados das zonas terrestres interiores para o mar, através dos rios e da atmosfera. Os derrames no mar, sejam de hidrocarbonetos ou de HNS, representam uma fracção relativamente pequena da poluição marítima mundial. Contudo, os danos ambientais por estes causados, podem ser bastante significativos. A origem deste tipo de poluição é variável, e não está só relacionada com acidentes de petroleiros. Estes representam apenas 10% do total de petróleo derramado no mar (IMO, 2009: 29). Os navios transportam 99,7% do tráfego transoceânico, cujo volume aumentou oito vezes desde 1945 e continua a crescer. Nele são utilizados mais de 46000 navios, que praticam cerca de 4000 portos. O transporte marítimo permanecerá, certamente, como o principal meio de movimentação das matérias-primas e dos produtos manufacturados entre fornecedores e consumidores. O petróleo e os seus derivados ocupam 30% da carga total transportada, metade da qual é originada no Médio Oriente, com destino ao Japão, China e à Europa Ocidental. Os outros produtos mais importantes transportados são o minério de ferro (9%), o carvão (8%) e os cereais (5%) (RIBEIRO, 2008: 69).

Portugal é um dos países que sofre de elevado risco de acidentes de poluição, uma vez que grande parte das rotas comerciais atravessa a nossa Zona Económica Exclusiva (ZEE). Por outro lado, o nosso país também importa todo o petróleo que consome, implicando o transporte por via marítima de grandes quantidades de hidrocarbonetos, e

14 IMO – Facts and Figures.
aumentando desta forma a probabilidade de ocorrência de situações de derrames com consequências danosas, e em consequência destes factos, o aumento do risco associado. Como resultado desta conjuntura e risco, tem-se verificado na ZEE portuguesa uma grande quantidade de derrames originadores de poluição, acrescendo o facto de que as condições meteorológicas, hidrográficas e oceanográficas típicas da nossa costa poderão agravar ainda mais os efeitos nefastos dos mesmos derrames. Conclui-se assim ser indispensável, para qualquer Estado costeiro, e nomeadamente para Portugal, que estejam disponíveis meios de combate à poluição no mar o mais actualizados e eficientes possível, para que estes factos sejam acutelados ou minimizados.

Em conclusão, podemos afirmar que a poluição do meio marinho põe em risco os habitats e ecossistemas, especialmente os mais precários. Isto é particularmente grave quando são atingidas áreas protegidas, povoadas por fauna ou flora raras ou em vias de extinção. Estes impactos podem também variar com os tipos de substâncias derramadas, a sua composição e época do ano em que ocorre o acidente. Outro factor de preocupação, que pode assumir uma grande importância numa situação de poluição do meio marinho, são os prejuízos económicos. As restrições na área afectada pelo derrame a navios comerciais, desportos aquáticos, pesca desportiva e comercial, exploração de portos e marinas, actividades turísticas e outras actividades podem trazer severas consequências na economia local, e ainda prolongar-se por outras actividades.

c. **Enquadramento Legislativo**

c (1) Enquadramento Legal Nacional

Na sequência da criação da já mencionada Lei de Bases do Ambiente de 1987, o governo português determinou em 1993 a criação do PML15, que tem um carácter marcadamente operacional. Este plano estabelece um dispositivo de resposta a situações de derrames de hidrocarbonetos e outras substâncias perigosas ao definir responsabilidades das entidades e competências das autoridades encarregadas da execução das várias tarefas necessárias. Desta forma, além da definição e atribuição de responsabilidades e competências, o PML propõe fundamentalmente:

- Actuação atempada, eficaz e concertada no combate a estas situações;
- Estabelecimento de planos de intervenção;

15 RCM n.º 25/93 de 04 de Fevereiro de 1993.
Efectivação de medidas de carácter logístico (aquisição, conservação e manutenção de materiais e equipamentos, preparação prévia de instalações e infra-estruturas) e organizacional (plano de comunicações: acções, estudos de antecipação de situações de poluição e projecção dos resultados de combate; obtenção de informação);

Formação técnica dos responsáveis pelo combate à poluição, bem como do pessoal de intervenção;

Realização de exercícios periódicos;

Criação de Centros de Operações e Bases Logísticas

O PML define também quais as entidades que a nível nacional detêm competências no combate à poluição do meio marinho, as quais são possuidoras de legislação dedicada, e das quais se destacam as seguintes:

- DGAM / Comando-Geral da Polícia Marítima;
- Departamentos Marítimos / Comandos Regionais da Polícia Marítima;
- Capitanias / Comandos Locais da Polícia Marítima e Delegações Marítimas;
- Instituto de Socorros a Náufragos (ISN);
- PSP / GNR / Polícia Municipal;
- Outros ramos Forças Armadas;
- Autoridade Nacional de Protecção Civil (ANPC);
- Instituto Nacional de Emergência Médica (INEM);
- Administração Portuária;
- Outras entidades privadas ou públicas de administração portuária.

c (2) **Enquadramento Legal Internacional**

As Convenções Internacionais que visam a prevenção ou redução da poluição do mar, actualmente em vigor, podem ser classificadas em três categorias, de acordo com o tipo de poluição que se pretende prevenir e portanto regulamentar (FERNANDES, 2001:Anx1-3)

- A poluição "voluntária" relacionada com as descargas efetuadas deliberadamente no mar, com a finalidade de eliminar determinados produtos, efectuando limpezas aos porões dos navios.
- A poluição "acidental", provocada por um acidente no mar; é o caso de naufrágios, encalhes, colisão, explosões.
Medidas de Combate à Poluição Marítima – Tendências e Lições Aprendidas

- A poluição "operacional", que é devida à exploração comercial dos navios, ou seja, proveniente de derrames ou percas efectuadas em operação normal.

Atendendo à importância destas Convenções, iremos passar a enumerá-las, descrevendo muito resumidamente quais as principais disposições das que tratam exclusivamente da prevenção da poluição (MTAMN-1, 2007: 2.4-2.11). Expomos em Apêndice 1, uma abordagem descritiva mais detalhada das convenções que seguidamente elencamos.

I. IMERSÕES EFECTUADAS POR NAVIOS E AERONAVES.
 Convenção Internacional para a Prevenção da Poluição Marinha causada por Operações de Imersão de Detritos e outros Produtos.
 As Partes Contratantes comprometem-se a proibir a imersão de substâncias particularmente perigosas.
- **OSPAR 1992** - “Convention for the protection of the Marine Environment of the North-East Atlantic”.
 Convenção para a Protecção do Meio Marinho do Atlântico Nordeste.
 Prevê as medidas possíveis para prevenir e combater a poluição, bem como as medidas necessárias à protecção da zona marítima contra os efeitos prejudiciais das actividades humanas de forma a salvaguardar a saúde do homem e a preservar os ecossistemas marinhos.

II. CONVENÇÕES QUE VISAM A SALVAGUARDA DA VIDA HUMANA NO MAR E A SEGURANÇA NA NAVEGAÇÃO.
- **SOLAS 74** - “International Convention for the Safety of Life at Sea”.
 Convenção Internacional para a Salvaguarda da Vida Humana no Mar.
 Especifica as normas mínimas para a construção, equipamento e o emprego dos navios, compatíveis com a sua segurança.
- **COLREG 72** - "Convention on the International Regulations for Prevention Collisions at Sea”.
 Convenção sobre o Regulamento Internacional para Evitar Abalroamentos no Mar.
Reconhece o estabelecimento de zonas de separação de tráfego, regras de rumo e governo, assim como indicações técnicas para o emprego de faróis, marcas e sinais sonoros e luminosos.

- **LL/LOAD LINES 1966 - “International Convention on Load Lines”.**
 Convenção Internacional das Linhas de Carga.
 Estabelece os limites máximos que um navio pode carregar, bem como outras regras referentes à estanqueidade.

III. CONVENÇÕES QUE SE DEBRUÇAM SOBRE AS CONSEQUÊNCIAS DE UM ACIDENTE.

- **CLC 1969 “International Convention on Civil Liability for Oil Pollution Damage”.**
 Convenção Internacional sobre a Responsabilidade Civil pelos Prejuízos devidos à Poluição por Hidrocarbonetos.
 Proporciona um mecanismo para garantir o pagamento de indemnizações às pessoas prejudicadas pela contaminação por hidrocarbonetos, resultante de sinistros marítimos em águas territoriais e no litoral de um Estado Contratante.

- **INTERVENTION 1969 “International Convention relating to Intervention on the High Seas”.**
 Convenção Internacional sobre Intervenção em Alto Mar em caso de acidente que provoque ou possa vir a provocar a poluição por hidrocarbonetos. Afirma o direito do Estado ribeirinho de adoptar as medidas necessárias no alto mar para prevenir, mitigar ou eliminar o perigo para as suas costas, proveniente da contaminação por hidrocarbonetos.

- **FUND 1971 “International Convention on the Establishment of an International Fund for Compensation for Oil Pollution Damage”.**
 Convenção Internacional para a Constituição de um Fundo Internacional de Compensação pelos Prejuízos devidos à Poluição por Hidrocarbonetos e Protocolo 76.
 Permite uma cobertura dos prejuízos que excedam o limite fixado pela CLC 1969 ou não cobertos por essa Convenção.
IV. POLUIÇÃO OPERACIONAL.

- **OILPOL 1954**: “International Convention for the Preventions of Pollution of the Seas by Oil”.
 Convenção Internacional para a prevenção da Poluição do Mar por Hidrocarbonetos.
 Esta Convenção foi o primeiro acordo entre governos para prevenir a poluição marinha produzida pelas descargas dos navios.

- **MARPOL 1973/78**: “International Convention for the Prevention of Pollution from Ships”.
 Convenção Internacional para a Prevenção da Poluição por Navios.
 Esta Convenção aplica-se a todos os navios e a todas as substâncias nocivas, impõe medidas restritivas e reforça os poderes dos Estados Contratantes.

V. CÓDIGOS.

- **BCH**: “Code for the Construction and Equipment of Ships carrying Dangerous Chemicals in Bulk” - Destinado a navios construídos antes de 1 de Julho de 1986, considerando as necessidades de segurança no transporte de substâncias químicas perigosas.

- **IBC**: “International Code for the Construction and Equipment of Ships carrying Dangerous Chemicals in Bulk” - Regulamenta a construção de navios de transporte a granel de substâncias químicas perigosas. Lista as variadas substâncias químicas transportadas, correlacionando-as com os seus perigos e classificando-as por grau de perigosidade.

- **IGC**: “International Code for the Construction of Ships Carrying Liquefied Gases in Bulk” – Aplicável a navios de transporte de gás a granel, construídos após 1 de Julho de 1986.

VI. ACORDOS INTERNACIONAIS.

- **ACORDO DE BONNA 1983**: “Bonn Agreement Counter Pollution”
 Acordo de cooperação para a protecção do Mar do Norte contra a poluição por hidrocarbonetos e outras substâncias perigosas. Decorrente dos trabalhos
de acordo, foi desenvolvido um manual de medidas anti-poluição (*Bonn Agreement Counter Pollution Manual*) que ainda hoje é uma referência nestas matérias, nomeadamente o capítulo 26 que é dedicado às HNS.

 Assinada pelos estados bálticos inicialmente em 1974 e refeita em 1992 com a assinatura de vários outros países do norte europeu. Visa a protecção do mar Báltico de todas as formas de poluição, incluindo a cooperação entre estados ratificadores.

- **BARCELONA 1976**: “*Convention for the protection of the Mediterranean Sea against Pollution*”.

 Convenção para a Protecção do Mar Mediterrâneo contra a Poluição.

 As partes contratantes comprometem-se a tomar todas as medidas adequadas para evitar, reduzir e combater à poluição da zona do mar Mediterrâneo.

- **OPRC 1990 “The International Convention on Oil Preparedness, Response and cooperation 1990”**

 Convenção Internacional sobre a Prevenção, Actuação e Cooperação no Combate à Poluição por hidrocarbonetos.

 Convenção adoptada em Londres a 30 de Novembro que visa os procedimentos de notificação relativos a acidentes de poluição por hidrocarbonetos.

- **Acordo de Lisboa 1990 (CILPAN)**

 Acordo de Cooperação para a Protecção das Costas e das Águas do Atlântico Nordeste contra a Poluição.

 Ainda não está em vigor.

 Convenção Internacional sobre a Prevenção, Actuação e Cooperação no Combate à Poluição por HNS.

 Convenção baseada na doutrina OPRC 1990, que visa os procedimentos de notificação relativos a acidentes de poluição por HNS.

- **CNUDM**: Convenção das Nações Unidas sobre o Direito do Mar
d. **Enquadramento Organizacional**

A coberto do respectivo enquadramento legislativo, compete ao Sistema da Autoridade Marítima\(^{16}\) (SAM) a responsabilidade pela condução das operações de combate à poluição do meio marinho, sendo atribuída à Autoridade Marítima Nacional\(^ {17}\) (AMN) a competência de fazer cumprir a autoridade do Estado no espaço marítimo sob jurisdição nacional, e nomeadamente no combate à poluição marítima. A Autoridade Marítima Nacional é a estrutura superior de administração e coordenação dos órgãos e serviços que integrados na Marinha, possuem competências ou desenvolvem acções no âmbito do SAM. Por SAM entende-se o quadro institucional formado pelas entidades, órgãos ou serviços de nível central, regional ou local que, com funções de coordenação, executivas, consultivas ou policiais, exercem poderes de autoridade marítima. A AMN integra a Direcção-Geral da Autoridade Marítima (DGAM), como órgão central, e a Polícia Marítima (PM), que integra a estrutura operacional. No âmbito do SAM, estão cometidas à AMN, várias atribuições, entre as quais salientamos a segurança e controlo da navegação, a preservação e protecção dos recursos naturais, preservação e protecção do património cultural subaquático, a preservação e protecção do meio marinho e na implementação de medidas de prevenção e combate à poluição.

É através do Plano Mar Limpo (PML) que se definem em Portugal as normas de actuação para qualquer tipo de emergência resultante de derrames de hidrocarbonetos ou de outras substâncias perigosas (HNS). É igualmente através deste documento que se definem as responsabilidades de cada entidade envolvida na prevenção ou no combate às consequências negativas de um qualquer acidente de poluição, fixando as competências das entidades encarregadas da coordenação e da execução das actividades relativas à preparação e ao prosseguimento das operações de combate à poluição. Assim, é atribuída ao SAM a responsabilidade pela execução do PML, ou seja liderar as acções inerentes ao combate à poluição do meio marinho.

De acordo com o estipulado no PML e consoante o grau de gravidade da ocorrência, são atribuídas as responsabilidades operacionais da condução das acções de combate à poluição, aos representantes da AMN, de grau adequado. O dispositivo de combate à poluição, é igualmente conforme a gravidade da situação e implementa-se por graus de prontidão, a cada qual corresponde um responsável operacional. Deste modo, os graus de prontidão referidos são os seguintes:

\(^{16}\) Orgânica instituída pelo DL n\(^{43}\)/2002, de 2 de Março.
\(^{17}\) Orgânica instituída pelo DL n\(^{44}\)/2002, de 2 de Março.
4º Grau de prontidão: corresponde à situação normal de ausência de poluição, devendo as diversas entidades executar medidas de preparação e prevenção.

3º Grau de prontidão: a estabelecer pela autoridade local (capitão do porto) quando se der uma ocorrência a nível local e os impactos ou necessidade de recursos sejam de dimensões locais.

2º Grau de prontidão: a estabelecer pela autoridade regional (chefe do Departamento Marítimo) quando a ocorrência pelas suas dimensões, complexidade, impacto ou necessidade de recursos assuma dimensões regionais.

1º Grau de prontidão: a estabelecer pelo Director-Geral da Autoridade Marítima quando a ocorrência pelas suas dimensões, complexidade, impacto ou necessidade de recursos assuma dimensões nacionais.

Segue-se a enumeração das atribuições e funções das principais entidades que detêm responsabilidades no combate à poluição do meio marinho e que decorrem do estipulado no PML (MTAMN-1, 2007: 2.21):

DGAM / Comando-Geral da Polícia Marítima:

Departamentos Marítimos / Comandos Regionais da Polícia Marítima:
Gerem a situação de crise aquando da activação do grau de prontidão 2. Activam o centro de crise e/ou de operações. Fornecem dados técnicos de condução das operações. Gerem o pessoal e material no terreno. Realizam os contactos com outras entidades que necessitem de estar informadas, incluindo todas as capitaniais da sua área de jurisdição. Pedem dados técnicos a outras
unidades da Marinha e, caso adequado, a outros ramos das Forças Armadas. Gerem a saída de informação para a comunicação social.

- **Capitanias / Comandos Locais da Polícia Marítima e Delegações Marítimas:** Gerem a situação de crise aquando da activação do grau de prontidão 3, previsto no PML. Activam o centro de crise e/ou de operações. Fornecem dados técnicos de condução das operações. Gerem o pessoal e material no terreno. Realizam os contactos com outras entidades que necessitem de estar informadas, previstos no PML. Pedem dados técnicos a outras unidades da Marinha e, caso adequado, a outros ramos das Forças Armadas. Gerem a saída de informação para a comunicação social.

- **Instituto de Socorros a Náufragos (ISN):** Salvaguarda eventuais possibilidades de naufrágios e proporciona assistência básica de emergência em caso de perigo de vida.

- **PSP / GNR / Polícia Municipal:** Salvaguardam e garantem a segurança, delimitando um perímetro de acesso restrito no terreno.

- **Outros ramos Forças Armadas:** Garantem os meios materiais e humanos operacionais de ajuda ao combate efectivo da poluição. Garantem meios de análise pedidos pela entidade gestora da crise. Salvaguardam a actuação em várias situações de emergência.

- **Autoridade Nacional de Protecção Civil (ANPC):** Garante os meios materiais, humanos e os serviços operacionais essenciais de ajuda e combate efectivo da poluição. Salvaguarda a actuação em várias situações de emergência.

- **Instituto Nacional de Emergência Médica (INEM):** Salvaguarda a assistência médica básica e/ou avançada e o transporte de feridos para centros de tratamento avançados. Proporciona apoio técnico no decorrer das operações com vista à salvaguarda da vida humana.

- **Administração Portuária e outras entidades privadas ou públicas de administração portuária:**
Garantem a protecção das zonas afectados dentro da sua respectiva área de responsabilidade, no âmbito do respectivo grau de prontidão.

Estando desta forma definida e enquadrada a organização nacional para o combate à poluição do meio marinho. Seguidamente, iremos abordar de um modo mais aprofundado a estrutura nacional de resposta a ocorrências de poluição no mar, efectuando a sua descrição seguida de uma análise funcional do “Estado da Arte” no combate à poluição nacional.
2. Estado da Arte no Combate à Poluição Marítima

A existência de uma estrutura nacional de resposta a situações de poluição por derramamento de substâncias poluentes no mar, é uma das obrigações determinadas pelas convenções OPRC 1990 e OPRC-HNS 2000, adoptadas pela “International Maritime Organization” (IMO) e ratificadas por Portugal.

De acordo com a descrição efectuada no capítulo anterior, o PML é o plano de nível operacional fundamental da doutrina nacional sobre o combate à poluição marítima em Portugal, sendo enquadrado conceptualmente pelo Plano Estratégico do Plano Mar Limpo, que no entanto, ainda não está aprovado e em vigor (MTAMN-1, 2007: 2.24). Na sequência do estipulado no mesmo plano, e para uma abordagem mais objectiva e técnica, foram criados os planos de nível táctico, regionais e locais do continente e regiões autónomas, de combate à poluição marítima, designados de Planos de Intervenção (PI), que pretendem abranger e descrever todas as acções tidas por convenientes no combate à poluição marítima. Estes PI foram aprovados por Despacho Conjunto do Ministro da Defesa Nacional, do Ministro do Equipamento, Planeamento e Administração do Território e do Ministro do Ambiente.

a. Planos de Intervenção

Os PI têm por objectivo o proporcionar de uma resposta rápida e eficaz face à ameaça ou ocorrência de um derrame de hidrocarbonetos ou de outras substâncias perigosas no mar, de modo a minimizar danos para o ambiente bem como o impacte sobre os bens económicos e sociais das populações situadas na sua proximidade, integrando sob um comando único a direcção e coordenação de todos os meios humanos e materiais envolvidos nas operações de combate à poluição.

Definem as responsabilidades e atribuições das Entidades intervenientes, ou que possam ser chamadas a intervir, nas acções de combate à poluição bem como do pessoal nelas envolvido e os mecanismos de mobilização, de ajuda (em meios humanos e materiais), apoio técnico das Entidades que dele façam parte integrante ou que possam revelar-se de utilidade.

18 De acordo com a doutrina NATO (AJP-5, 2009: 1-4) um Plano de Intervenção enquadra-se no grupo dos Planos de Resposta a Crises “Crisis Response Planning” sendo denominado de Plano Operacional “Operation Plan”. A este tipo de planos incumbe responder a uma ameaça ou risco emergente ou em desenvolvimento, sendo necessariamente detalhado e abrangente para que através dele sejam efectuadas as acções necessárias à execução da missão. Pese a definição anterior, e para efeitos deste estudo, utilizamos a designação de “Plano de Intervenção” associada ao nível táctico, dado serem os termos utilizados no PML, estando assim em consonância com a legislação nacional.

19 Despacho Conjunto de 16 de Agosto de 1996, publicado no Diário da República II série nº 200 de 29-8-1996.
para as acções a desenvolver. Definem também as estratégias, os métodos e as técnicas de combate e os procedimentos operacionais face a uma ocorrência de poluição, tendo em linha de conta os riscos envolvidos, o comportamento e evolução dos produtos derramados e as áreas sensíveis, considerando igualmente os esquemas de formação e treino do pessoal envolvido na direcção e coordenação das operações, chefias de pessoal e executantes.

No âmbito da sua aplicação um PI será activado sempre que seja estabelecido qualquer um dos graus de prontidão do PML pela Autoridade Marítima Local, Regional ou Nacional (Capitão do Porto, Chefe do Departamento Marítimo ou Director-Geral de Marinha) derivado da ocorrência de um incidente susceptível de provocar um derrame, ou um derrame efectivo, de hidrocarbonetos ou de HNS no mar ou em terra, e que afecte a área de responsabilidade respectiva. Decorrente do treino requerido na prossecução da requerida eficiência de todos os elementos envolvidos, um PI será igualmente activado sempre que sejam efectuados exercícios que pela sua complexidade assim o exijam.

Os PI contêm a identificação e descrição das áreas de risco e áreas sensíveis, e as respectivas probabilidades ou riscos de derrames, para cada uma das zonas de responsabilidade afectas. Organizam e determinam as entidades intervenientes nas operações de combate à poluição e a forma de intervenção, assim como a organização, responsabilidades, atribuições e mobilização do pessoal envolvido, incluindo o apoio de entidades externas. Definem igualmente a mobilização dos equipamentos e materiais afectos às acções efectuadas no terreno e os planos de comunicações a serem utilizados.

Operacionalmente, definem a activação, missão, localização e posterior desactivação dos Centros de Operações20, cuja missão é de servir de suporte operacional e administrativo às acções de direcção e coordenação do responsável pela execução do Plano de Intervenção Local, e dos Destacamentos de Intervenção Locais21, cuja missão é a de executar as acções determinadas pelo Director/Coordenador do Plano de Intervenção Local tendentes a evitar o alastramento de derrames de hidrocarbonetos ou de outras substâncias perigosas no mar ou no litoral e proceder às operações de limpeza de modo a minimizar ou anular os seus efeitos. Contêm a tipificação dos incidentes e cenários tipo, assim como os comportamentos e evolução espectáveis dos produtos derramados e/ou dos volumes perdidos no mar.

Nos PI estão também definidas as linhas orientadoras de acção do combate à poluição, com uma análise da situação, considerando as já definidas áreas sensíveis e os respectivos graus de prioridades de protecção, a localização do derrame, quantidade e tipo, características,

20 OCA – Operational Control Authorities
21 OSC – On-Scene Coordinators
comportamento e evolução dos produtos derramados, as condições hidrológicas e meteorológicas, a morfologia das costas e margens, os meios humanos e materiais disponíveis, e quaisquer outros que sejam considerados necessários, face à localização do derrame, permitindo definir as melhores linhas de acção e consequentemente o estabelecimento dos planos a serem tomados pelo pessoal interveniente.

No caso de um derrame com origem em terra, estão previstas as acções a adoptar quer sobre a própria instalação, no sentido de reduzir ou eliminar o derrame, quer sobre o produto derramado, esteja ele em terra ou tenha já atingido o mar. No caso de um derrame com origem num navio no mar prevêem-se as acções a efectuar sobre o navio, a carga do navio e o produto derramado ou a carga perdida. Deste modo, os PI prevêem as técnicas de combate a serem utilizadas após o estabelecimento da estratégia a seguir, e haverá que implementar os aspectos tácticos de combate ao incidente pela utilização de técnicas específicas de combate que condicionará as acções a desenvolver.

Considerando a necessidade de tentar repor a situação anterior aos incidentes, estão previstas e planeadas também nestes planos as operações de limpeza do litoral e os meios de transporte, armazenagem, tratamento e eliminação de detritos.

Finalmente, um PI contém todas as tabelas de decisão e listas de procedimentos necessárias ao combate à efectivo a uma situação ou situações específicas de poluição, considerando todas as hipóteses e relacionando-as com os tipos e derrames e os locais onde estas ocorrem.

b. O Caso das HNS

A Marinha, através da DGAM, elaborou e tem disponível um guia prático22 que consubstancia o suporte teórico nacional (PML e os PI) em conformidade com a convenção OPRC 1990, e que se destina a apoiar operacional e tecnicamente, as entidades responsáveis pelo comando e controlo dos incidentes e/ou acidentes de combate à poluição do mar nas áreas de jurisdição marítima nacionais. Este guia prático é, no entanto, principalmente vocacionado para o combate à poluição derivada por derrames de hidrocarbonetos. Como nota podemos referir que até o serviço da DGAM vocacionado para estas matérias ainda se denomina Serviço de Combate à Poluição do Mar por Hidrocarbonetos23 (SCPMH), revelando a ainda notória falta de doutrina vocacionada para as questões da poluição derivada por HNS. Será ainda de referir que, de acordo com as

22 MTAMN-1, “Guia Prático de Suporte ao Combate à Poluição do Mar por Hidrocarbonetos”.

23 A LOMAR prevê a criação da Direcção de Combate à Poluição do Mar (DCPM), como unidade orgânica permanente da DGAM e objectivando a substituição do SCPMH, que no entanto está ainda por activar.
entrevistas efectuadas e da análise efectuada aos PI nacionais, se constata que estes, ainda que contemplem teoricamente, o combate à poluição do mar por HNS, estão vocacionados para a poluição derivada de derrames por hidrocarbonetos.

Apenas desde a implementação do protocolo OPRC-HNS 2000 foi determinada internacionalmente a necessidade de prever medidas de preparação e resposta dedicadas para as HNS e desde então, os países ratificadores do referido protocolo, têm evoluído na elaboração de respostas nacionais. Nesta sequência, e após consulta e análise dos PI dos Departamentos Marítimos e Capitanias dos Portos, constatámos que em Portugal estas respostas ainda não estão disponíveis. Outro motivo, talvez relevante, para a ainda existente lacuna na doutrina vocacionada para as HNS em Portugal, é a grande discrepância nos números dos acidentes causados por derrames de hidrocarbonetos e de HNS, conforme exposto na tabela 1, que expõe os eventos mais significativos ocorridos em Portugal. Salientamos que apenas uma ocorrência se refere às HNS, (o encalhe na Ericeira do navio Alchimist Emden contendo 1600 toneladas de produtos químicos), justificando a existência de uma reduzida sensação da necessidade de ter este tipo de derrames em consideração, ou pelo menos, em situação de igual perigosidade aos provocados por derrames de hidrocarbonetos.

<table>
<thead>
<tr>
<th>Navio</th>
<th>Tipo de Incidente</th>
<th>Local</th>
<th>Data</th>
<th>Quantidade e produto derramado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Julius Schindler</td>
<td>Operação</td>
<td>Ponta Delgada</td>
<td>Fev 69</td>
<td>9000 ton. crude</td>
</tr>
<tr>
<td>Albarosa</td>
<td>Encalhe</td>
<td>Ponta Delgada</td>
<td>Fev 69</td>
<td>7000 ton. crude</td>
</tr>
<tr>
<td>Giuseppe Giuletti</td>
<td>Afundamento</td>
<td>100mi de S. Vicente</td>
<td>Abr 72</td>
<td>26000 ton. comb. e lub.</td>
</tr>
<tr>
<td>Saint Mary</td>
<td>Colisão/rombo</td>
<td>230mi da costa continental</td>
<td>Jan 74</td>
<td>3000 ton. comb. e lub.</td>
</tr>
<tr>
<td>Jacob Maersk</td>
<td>Encalhe</td>
<td>Porto Leixões</td>
<td>Jan 75</td>
<td>80000 ton.</td>
</tr>
<tr>
<td>Alchimist Emden</td>
<td>Encalhe</td>
<td>Ericeira</td>
<td>Jul 78</td>
<td>1600 ton. prod. químicos</td>
</tr>
<tr>
<td>Nisa</td>
<td>Operação</td>
<td>Porto Sines</td>
<td>Mai 87</td>
<td>900 ton. crude</td>
</tr>
<tr>
<td>Reijin</td>
<td>Encalhe</td>
<td>Douro</td>
<td>Abr 88</td>
<td>430 ton. comb. e lub.</td>
</tr>
<tr>
<td>River Gurara</td>
<td>Encalhe</td>
<td>Espichel</td>
<td>Fev 89</td>
<td>900 ton. comb. e lub.</td>
</tr>
<tr>
<td>Marão</td>
<td>Rombo</td>
<td>Sines</td>
<td>Jul 89</td>
<td>5000 ton. crude</td>
</tr>
<tr>
<td>Aragon</td>
<td>Rombo</td>
<td>Porto Santo</td>
<td>Jan 90</td>
<td>25000 ton. Crude</td>
</tr>
<tr>
<td>Entrust Faith</td>
<td>Afundamento</td>
<td>Ponta Delgada</td>
<td>Dez 91</td>
<td>1200 ton. combustível</td>
</tr>
<tr>
<td>Desconhecido</td>
<td>Lavagem de tanques</td>
<td>Figueira da Foz</td>
<td>Dez 92</td>
<td>800 ton. crude</td>
</tr>
<tr>
<td>Ronjay Tili</td>
<td>Encalhe</td>
<td>Leixões</td>
<td>Out 93</td>
<td>300 ton. comb. e lub.</td>
</tr>
<tr>
<td>Vianna</td>
<td>Incêndio/afundamento</td>
<td>Porto da Horta</td>
<td>Abr 94</td>
<td>510 ton. comb. e lub.</td>
</tr>
<tr>
<td>Cercal</td>
<td>Encalhe</td>
<td>Porto de Leixões</td>
<td>Out 94</td>
<td>3000 ton. crude</td>
</tr>
<tr>
<td>New World</td>
<td>Colisão/rombo</td>
<td>200mi de S. Vicente</td>
<td>Dez 94</td>
<td>2500 ton. crude</td>
</tr>
<tr>
<td>Carla</td>
<td>Mau tempo</td>
<td>200mi de S. Miguel</td>
<td>Nov 97</td>
<td>74 contentores com material radioativo</td>
</tr>
<tr>
<td>Desconhecido</td>
<td>Lavagem de tanques</td>
<td>Figueira da Foz</td>
<td>Ago 98</td>
<td>500 ton. crude</td>
</tr>
<tr>
<td>Coral Bulker</td>
<td>Encalhe</td>
<td>Viana do Castelo</td>
<td>Dez 00</td>
<td>700 ton. comb. e lub.</td>
</tr>
<tr>
<td>Prestige</td>
<td>Afundamento</td>
<td>Galiza</td>
<td>Nov 02</td>
<td>64000 ton.crude</td>
</tr>
</tbody>
</table>

Fontes: DGAM-SCPMH, CEDRE e ITOPF

No entanto, o PML tem como objecto e refere-se especificamente aos...
hidrocarbonetos e a outras substâncias perigosas (HNS) (PAULO, 2011, 8), consubstanciado pela ratificação portuguesa do OPRC-HNS 2000, pelo que julgamos ser de toda a necessidade a elaboração, e posterior aprovação, de PI direccionados igualmente para as questões das HNS.

Julgamos deste modo ter respondido à segunda questão derivada, sobre a existência de PI nacionais adequados a todas as substâncias passíveis de originar poluição no meio marinho, após um eventual derrame. Com efeito não nos foi possível validar a segunda hipótese, dado ter-se constatado o facto, de que os PI nacionais, não estarão ainda orientados para o combate à poluição relativa a todas as substâncias passíveis de ser derramadas no meio marinho, nomeadamente as HNS.

c. Modelo Actual de Resposta – Análise SWOT

Efectuando uma análise ao modelo actual de resposta para ocorrências de poluição marítima por HNS, pretendemos identificar os pontos-chave que permitem consolidar as conclusões até ao momento retiradas, para uma resposta à nossa questão principal e, se concluído ser necessário, podermos avançar com o nosso contributo, visando a actualização dos planos de intervenção nacionais, no que diz respeito à prevenção e combate da poluição causada por HNS, no seguimento dos objectivos deste estudo, inicialmente elencados.

A Matriz SWOT é um modelo conceptual para efectuar análises sistemáticas que facilitem o cruzamento das Oportunidades e Ameaças Externas, com as Forças e Fraquezas Internas (LEITÃO e DEODATO, 2004: 15) e será aplicada ao estudo do caso em questão.

Começamos por caracterizar o Ambiente Externo, no que diz respeito a Oportunidades, que consideramos factos a explorar, e Ameaças, que consideramos problemas a superar.

<table>
<thead>
<tr>
<th>Oportunidades</th>
<th>Ameaças</th>
</tr>
</thead>
<tbody>
<tr>
<td>▪ Consciência dos riscos inerentes à poluição do meio marinho por parte da população internacional;</td>
<td></td>
</tr>
<tr>
<td>▪ Existência de uma sede da EMSA em Lisboa;</td>
<td></td>
</tr>
<tr>
<td>▪ Existência de lições apreendidas e doutrina internacional sobre o combate à poluição por derrames de HNS;</td>
<td></td>
</tr>
<tr>
<td>▪ A poluição do espaço marítimo sob jurisdição nacional é um risco a que Portugal está sujeito;</td>
<td></td>
</tr>
<tr>
<td>▪ A localização do país dentro das principais rotas de navegação marítima, aumenta o risco de ocorrência de poluição;</td>
<td></td>
</tr>
<tr>
<td>▪ Vasta extensão da ZEE Portuguesa;</td>
<td></td>
</tr>
<tr>
<td>▪ A fraca visibilidade imediata dos efeitos da poluição por HNS;</td>
<td></td>
</tr>
</tbody>
</table>
Medidas de Combate à Poluição Marítima – Tendências e Lições Aprendidas

Seguidamente, caracterizaremos o ambiente interno, elencando as forças que pretendemos potenciar e identificando as fraquezas que se pretende minimizar.

Tabela 3: Ambiente Interno

<table>
<thead>
<tr>
<th>Forças</th>
<th>Fraquezas</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Consciência dos riscos inerentes à poluição do meio marinho por parte da população nacional;</td>
<td>- Inexistência de doutrina nacional sobre o combate a derrames de HNS.</td>
</tr>
<tr>
<td>- Existência de uma organização estrutural de resposta a situações de suspensa e efectividade de poluição marítima;</td>
<td>- Inexistência de planos, regionais e locais do continente e regiões autónomas, de combate à poluição marítima, designados de Planos de Intervenção (PI) vocacionados para derrames de HNS;</td>
</tr>
<tr>
<td>- Credibilidade da AMN;</td>
<td>- Inexistência de uma resposta nacional eficaz perante situações de poluição por HNS;</td>
</tr>
<tr>
<td>- Existência de competências e capacidades nacionais de resposta a situações de ocorrência de poluição marítima;</td>
<td>- Inexistência de meios de combate dedicados à poluição por HNS;</td>
</tr>
<tr>
<td>- A existência de planos, regionais e locais do continente e regiões autónomas, de combate à poluição do meio marinho, designados de Planos de Intervenção (PI);</td>
<td>- Existência de poucas lições aprendidas sobre o combate à poluição por derrames de HNS;</td>
</tr>
</tbody>
</table>
| - Existência de uma estrutura de resposta a derramamentos de hidrocarbonetos no mar que poderá ser utilizada, com os devidos ajustamentos, para responder a situações de derrame de HNS; | - Dificuldades na condução de processos legais e judiciais.
| - Existência de outras entidades envolvidas no combate à poluição, no âmbito do SAM; | |

Elaborámos em seguida a matriz SWOT, com o cruzamento das Forças, Fraquezas, Oportunidades e Ameaças, de forma a maximizar Forças e Oportunidades, minimizar as Fraquezas e maximizar as Oportunidades, usar as Forças para evitar as ameaças e, por último, minimizar fraquezas e evitar ameaças, de acordo com as seguintes estratégias (LEITÃO e DEODATO, 2004:16):

1º. A Estratégia (Maxi-Maxi), que constitui a situação mais desejável, pois baseia-se na exploração das Forças Internas para retirar vantagens das Oportunidades presentes no Ambiente Externo;

2º. A Estratégia (Maxi-Mini), que se baseia na organização das Forças Internas para lidar com as Ameaças presentes no ambiente externo, com o objectivo de maximizar as primeiras e minimizar as últimas;

3º. A Estratégia (Mini-Maxi), que serve de base a um plano de desenvolvimento que visa a conversão das Fraquezas em Forças, dadas as Oportunidades presentes no ambiente externo;

4º. A Estratégia (Mini-Mini), que consubstancia o cenário menos desejável, isto é, de minimização simultânea das Ameaças Externas e das Fraquezas Internas.

24 Ver extractos da entrevista ao VALM Silva Carreira, em anexo (Apêndice 3).
Tabela 4: Matriz SWOT

<table>
<thead>
<tr>
<th>Maxi-Maxi</th>
<th>Oportunidades</th>
<th>Maxi-Mini</th>
<th>Amenazas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poder</td>
<td>Aproveitar a existência de lições apreendidas e doutrina internacional sobre o combate à poluição por derrames de HNS, que poderão ser minimizadas pela existência de lições apreendidas e doutrina europeia.</td>
<td>O facto da poluição do espaço marítimo sob jurisdição nacional ser um risco a que Portugal está sujeito e no caso das HNS os efeitos dessa mesma poluição são pouco visíveis, pode ser minimizado pela consciência nacional.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aproveitar e aumentar a consciência global dos riscos inerentes à poluição, implementando acções de esclarecimento às comunidades que vivem junto ao mar e às que nele exercem as suas actividades profissionais e lúdicas.</td>
<td>O facto do Portugal se encontrar no meio das principais rotas de navegação marítima e possuir uma ZEE muito extensa, implicando um aumento da probabilidade de surgirem focos de poluição, pode ser minimizado pela existência de uma estrutura organizacional de resposta e a utilização efectiva dos Planos de Intervenção existentes.</td>
<td>A vasta extensão da ZEE Portuguesa e a localização do nosso país dentro das principais rotas de navegação amplia a necessidade de existência de doutrina dedicada às HNS.</td>
</tr>
<tr>
<td></td>
<td>Aproveitar a existência de uma organização e estrutura nacional de resposta, com a existência de lições apreendidas e doutrina dedicada às HNS.</td>
<td></td>
<td>A aproveitar a existência de planos, regionais e locais do continente e regiões autónomas, de combate à poluição marítima, designados de Planos de Intervenção (PI) e complementá-los com dados relativos às HNS.</td>
</tr>
<tr>
<td></td>
<td>Aproveitar a existência de planos, regionais e locais do continente e regiões autónomas, de combate à poluição marítima, designados de Planos de Intervenção (PI) e complementá-los com dados relativos às HNS.</td>
<td></td>
<td>A aproveitar a existência de uma sede da EMSA em Lisboa para implementar acções de treino e formação com as entidades pertencentes ao SAM.</td>
</tr>
<tr>
<td></td>
<td>Mantendo a credibilidade da AMN, envolvendo as demais entidades existentes no âmbito do SAM, na perspectiva das acções de dissuasão e prevenção de ocorrências de poluição junto da comunidade nacional.</td>
<td></td>
<td>A aproveitar a existência de uma sede da EMSA em Lisboa para implementar acções de treino e formação com as entidades pertencentes ao SAM.</td>
</tr>
<tr>
<td></td>
<td>Aproveitar a existência de uma sede da EMSA em Lisboa para implementar acções de treino e formação com as entidades pertencentes ao SAM.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Mini-Maxi | A inexistência de doutrina nacional sobre o combate a derrames de HNS, a inexistência de Planos de Intervenção (PI) vocacionados para derrames de HNS, que poderão ser minimizadas pela existência de lições apreendidas e doutrina europeia e da EMSA ter sede em Lisboa, podendo facilitar a criação e obtenção das lacunas acima descritas. | A poluição do espaço marítimo sob jurisdição nacional é um risco a que Portugal está sujeito e no caso das HNS os efeitos dessa mesma poluição são pouco visíveis, Portugal encontra-se no meio das principais rotas de navegação marítima e possui uma ZEE muito extensa, implicando um aumento da probabilidade de surgirem focos de poluição. |

| Mini-Mini | Inexistência de uma resposta nacional eficaz perante situações de poluição por HNS e a inexistência de meios dedicados ao combate à poluição por HNS, poderão ser minimizadas pela existência de lições apreendidas e doutrina europeia. | Necessidade de consciência global dos riscos inerentes à poluição marítima, que no caso das HNS os efeitos dessa mesma poluição são pouco visíveis, poderão ser minimizados pela existência de uma estrutura organizacional de resposta e a utilização efectiva dos Planos de Intervenção existentes. |

| **Perigo** | A inexistência de resposta nacional eficaz sobre o combate a derrames de HNS, a inexistência de Planos de Intervenção (PI) vocacionados para derrames de HNS, a inexistência de uma resposta nacional eficaz perante situações de poluição por HNS e a inexistência de meios dedicados ao combate à poluição por HNS. | | |

| | A inexistência de resposta nacional eficaz perante situações de poluição por HNS poderá ser minimizada através dos acordos europeus, apoio e colaboração da EMSA. | | |

Através dos resultados da análise supra, e orientando o nosso
raciocínio para precaver o pior cenário possível (Mini-Mini), e visando o mais benéfico (Maxi-Maxi), concluímos que Portugal necessita de:

- Produzir doutrina nacional sobre o combate a derrames de HNS;
- Produzir e manter actualizados Planos de Intervenção (PI) vocacionados para derrames de HNS;
- Possuir equipamentos de combate vocacionados para a poluição originada por HNS;
- Manter acções de divulgação e consciencialização dos efeitos da poluição originada por HNS, dada a fraca visibilidade dos seus efeitos, e as inerentes dificuldades na condução de processos legais e judiciais relativos a ilícitos deste género.
- Elaborar acordos com a EMSA, na prossecução de envolvência e interacção desta agência nas actividades de treino das entidades pertencentes ao SAM.
- Manter regulares exercícios de combate à poluição, com as entidades pertencentes ao SAM e a EMSA, tanto no combate aos derrames de hidrocarbonetos como de HNS.
3. **Poluição Marítima - HNS**

Na sequência das conclusões obtidas no capítulo anterior relativamente à necessidade de existência de PI nacionais dedicados ao combate à poluição derivada das HNS, e para familiarização e compreensão das características e particularidades das mesmas, importa nesta fase do nosso trabalho introduzir uma abordagem às suas características, métodos de combate à poluição associados. Finalizaremos esta abordagem com a análise de alguns exemplos de casos-tipo.

De acordo com a definição adoptada internacionalmente (IMO, 2000: 2)\(^{25}\), as HNS, que compreendem materiais inorgânicos, compostos orgânicos, químicos, minerais, etc., usados nas indústrias de transformação, petroquímica, têxtil, farmacêutica, alimentar e agrícola são “Quaisquer substâncias diferentes dos hidrocarbonetos, que se introduzidas no meio marítimo, poderão criar perigos para a saúde humana, colocando em perigo a vida marinha e os recursos provenientes do mar, incluindo o legítimo uso do meio por parte das populações”\(^{26}\). Ao lidar com estas substâncias, uma das primeiras prioridades será a identificação dos tipos de perigos associados inerentes e a correspondente avaliação dos riscos envolvidos, num derrame, tanto para o meio ambiente como para as pessoas envolvidas na resolução do problema.

a. **Propriedades das HNS**

A montante de uma acção de resposta a uma ocorrência de poluição, e nomeadamente poluição por HNS, deverá estar a prevenção da ocorrência desse mesmo derrame. Nesta fase os riscos associados são os inerentes aos materiais usados na contenção e estão relacionados com o pessoal envolvido numa acção de resposta. Se não houver tempo suficiente para dar resposta a uma situação de possível derrame, este irá provavelmente ocorrer. Os factores principais que determinam os riscos para o ambiente e o consequente impacto sócio-económico de um derrame desta natureza estão directamente relacionados com as propriedades físicas e químicas destes materiais e os seus efeitos no meio ambiente.

As propriedades das HNS que podem causar impacto no meio marinho, e por sua influência, nas actividades sócio-económicas associadas ao mar incluem as potenciais inflamabilidade, reactividade, toxicidade e perigos de explosão ou corrosão. No entanto, são as características físicas (volatilidade, densidade e solubilidade) destas substâncias e o respectivo comportamento face ao meio ambiente que determinam, se haverão ou não impactos associados ao derrame e quais as medidas de combate que poderão ser utilizadas, assim como as técnicas associadas, correlacionando

\(^{25}\) Artigo n." 2 (Definições).

\(^{26}\) Tradução livre.
Medidas de Combate à Poluição Marítima – Tendências e Lições Aprendidas

umas com as outras (BONN AGREEMENT, 2006: 2-3)\(^27\). Assim, as HNS agrupam-se em grupos generalizados de comportamento verificado após o derrame, com a vantagem de focar a nossa atenção nos aspectos do derrame que se relacionam com o potencial impacto no meio e os consequentes problemas para cada uma das respostas apropriadas, de acordo com a seguinte divisão (EMSA, 2007: 35):

- **Evaporantes** (*Evaporators – E*): compreendem todas as substâncias líquidas voláteis, que têm densidade inferior à da água do mar;
- **Flutuantes** (*Floaters – F*): compreendem todas as substâncias líquidas não voláteis que têm densidade inferior à da água do mar;
- **Afundantes** (*Sinkers – S*): compreendem todas as substâncias que têm densidade superior à da água do mar;
- **Dissolventes** (*Dissolvers – D*): compreendem todas as substâncias solúveis na água do mar.

De acordo com as fontes consultadas\(^28\), as HNS poderão ser divididas de um modo ainda mais refinado, considerando que os gases e os líquidos evaporantes tem um comportamento no meio marítimo bastante mais diversificado, conforme exposto na tabela 5 (BONN AGREEMENT, 2006: 2-3) e (HELCOM, 2002: 6-1).

Tabela 5 – Grupos de Comportamento de HNS

<table>
<thead>
<tr>
<th>Comportamento</th>
<th>Grupo</th>
<th>Propriedades</th>
<th>Exemplos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaporantes (Gases)</td>
<td>G</td>
<td>Evaporam imediatamente</td>
<td>Gás propano e gás butano</td>
</tr>
<tr>
<td></td>
<td>GD</td>
<td>Evaporam imediatamente e dissolvem-se</td>
<td>Amoníaco</td>
</tr>
<tr>
<td>Evaporantes (Líquidos)</td>
<td>E</td>
<td>Evaporam imediatamente e flutuam</td>
<td>Benzeno</td>
</tr>
<tr>
<td></td>
<td>ED</td>
<td>Evaporam imediatamente e dissolvem-se</td>
<td>Eter</td>
</tr>
<tr>
<td>Flutuantes</td>
<td>FE</td>
<td>Flutuantes evaporantes</td>
<td>Tolueno</td>
</tr>
<tr>
<td></td>
<td>FED</td>
<td>Flutuantes dissolventes que evaporam</td>
<td>Isobutanol</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>Flutuantes</td>
<td>Óleos vegetais e animais</td>
</tr>
<tr>
<td>Dissolventes</td>
<td>DE</td>
<td>Dissolvem-se rapidamente e evaporam</td>
<td>Acetona</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>Dissolvem-se rapidamente</td>
<td></td>
</tr>
<tr>
<td>Afundantes</td>
<td>SD</td>
<td>Afundantes dissolventes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>Afundantes</td>
<td>Carvão</td>
</tr>
</tbody>
</table>

b. **Avaliação de Risco**

De acordo com o anteriormente exposto e das conclusões obtidas no capítulo um, para efeitos deste estudo, incluiremos a definição de poluição no meio marinho no âmbito dos riscos. Tendo assim presente a fórmula matemática que define risco:

Risco = (Probabilidade de Ocorrência do Perigo) X (Consequências).

Analisando mais ao pormenor, assumimos que o perigo está associado às propriedades físicas das HNS, dado que é destas que resultam as consequências, sendo consequentemente e por inerência física uma constante em qualquer parte do globo. A probabilidade é determinada através dos relatos existentes e subsequentes cálculos estatísticos, que determinam a frequência de ocorrência de incidentes e as consequências despendem da vulnerabilidade dos locais ou navios, variando de local para local ou de navio para navio, de acordo com as medidas de prevenção e de resposta existentes à partida. Desta forma conseguimos determinar os factores que influenciam o nível expectável de risco:

- A natureza das substâncias;
- A quantidade de substâncias;
- A qualidade dos sistemas de armazenamento;
- A segurança do navio, qualificação e a experiência do seu pessoal e medidas de prevenção e resposta disponíveis.

Considerando estes factores e a sua influência, será aparentemente fácil de concluir que apenas a probabilidade e as consequências poderão ser alteradas, dado que os perigos associados às propriedades físicas não se irão alterar. As HNS são um grupo de substâncias com perigos intrínsecos associados, dado poderem ser inflamáveis, explosivas, tóxicas, reactivas, corrosivas, entre outras, e que apenas em caso de diluição no meio marinho ou em caso de dispersão poderão eventualmente alterar as suas propriedades.

Assim, todos os esforços deverão incidir na tentativa de redução da probabilidade de ocorrência de incidentes, por exemplo com recurso a equipamentos eficazes que cumpram com as indispensáveis regras de segurança ou com capacidades de resposta que limitem as consequências, tanto a bordo como em terra, de modo a prevenir ou reprimir um derrame de HNS.

Podemos então concluir que os riscos poderão ser minimizados inicialmente pela avaliação dos perigos associados e posteriormente seguindo as medidas de respostas mais convenientes, de acordo com os seguintes passos:

1º- Identificação das substâncias derramadas e/ou dos produtos originados pela reação das mesmas substâncias com a água do mar;
2º- Determinação do comportamento das mesmas substâncias, classificando-as com as devidas classes de comportamento (tabela 5);
3º- Determinação e localização da área contaminada (área de risco) e concentração
Medidas de Combate à Poluição Marítima – Tendências e Lições Aprendidas

- Monitorização contínua dos efeitos e realização de análises regulares à água e ar no local do incidente;

- Redução dos efeitos através de medidas apropriadas.

Concluímos referindo que os potenciais riscos associados a um derrame de HNS não se restringem aos factores directamente ligados às características das HNS, não devendo por conseguinte ser considerados isoladamente. O cálculo da área de risco deverá igualmente prever os riscos de ocorrência de incêndios devidos a explosões ou ainda os riscos de toxicidade, para as guarnições dos navios, para as populações da área afectada, se ocorrer perto de terra, ou para as equipas de resposta a estes incidentes, determinando eventuais evacuações de pessoal. Neste tipo de incidentes deverá sempre ser equacionado o potencial “efeito dominó”, dado que um derrame de HNS poderá ter consequências diversas e indutoras de outras que lhes estão indirectamente associadas (dependentes do tipo de HNS), que afectam ou influenciam o meio marinho para além do imediatamente perceptível. O procedimento que deverá ser seguido na avaliação de riscos originados por um derrame de HNS está graficamente definido no seguinte diagrama de fluxo (figura 1).

![Diagrama de Avaliação de Riscos](image)

Figura 1 – Diagrama de Avaliação de Riscos

c. Opções na tomada de decisão (Medidas de resposta)

A poluição com origem em derrames de HNS difere, logo à partida, da originada por
hidrocarbonetos na medida em que as primeiras têm inerente um enorme espectro de comportamentos e consequentes efeitos no meio ambiente, nomeadamente no meio marinho, com impacto mais severo que os causados por derrames de hidrocarbonetos, dado que muitas das HNS não são, por exemplo, biodegradáveis. A seleção das medidas de resposta apropriadas a incidentes com HNS requer um conhecimento muito detalhado das características físicas e químicas das substâncias envolvidas.

Apresentamos seguidamente (figura 2) um diagrama, que prevê de um modo global, os factores a ter em consideração, na tomada de decisão durante a fase de análise da situação.

Para que se possa decidir qual a ou as melhores medidas a tomar, deverá ser elaborada uma avaliação geral dos riscos associados, logo a seguir do isolamento do navio acidentado, dado que nestas situações, existem vários perigos associados tanto para as guarnições dos navios acidentados, como para as equipas de resposta e eventualmente para as populações das áreas limítrofes. A avaliação dos riscos associados deverá igualmente tomar em consideração todos os impactos ao nível ambiental e dos recursos sócio-económicos (pesca, aquaculturas, turismo, mariscagem e outras actividades inerentes ao mar).

Na generalidade as medidas de resposta podem ser agrupadas em duas categorias. Em primeiro lugar, as acções tomadas a bordo, salvaguardando as guarnições, o navio e a sua carga. Estas medidas envolvem acções de recuperação ou contenção de derrames das HNS embarcadas. Seguidamente, terão lugar as acções na área de risco, salvaguardando as equipas de resposta, as
populações, recursos naturais e instalações económicas afectadas. De acordo com as características das HNS e dos locais onde ocorrem os incidentes, poderão ser adoptadas diversas medidas de resposta, conforme listado na tabela 6.

Tabela 6 – Exemplos de Medidas de Resposta

<table>
<thead>
<tr>
<th>Medidas de Resposta</th>
<th>Tipo de HNS</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mudança da posição do navio</td>
<td>Gás tóxico.</td>
<td>Alterar a posição do navio relativamente aos ventos predominantes, de modo a que as colunas de gás ou fumo não afectem as zonas de entrada das equipas a bordo.</td>
</tr>
<tr>
<td>Reboque do navio para áreas menos sensíveis ou vulneráveis</td>
<td>HNS com áreas de impacto muito alargadas</td>
<td>Se o incidente ocorrer numa área sensível (populacional ou industrial) existindo perigos de explosão ou gases tóxicos na área de risco, será de considerar remover o navio.</td>
</tr>
<tr>
<td>Transbordo da carga (granel ou contentores)</td>
<td>HNS contentorizadas ou líquidas a granel.</td>
<td>Remoção das substâncias; requer pessoal, navios e equipamento especializado.</td>
</tr>
<tr>
<td>Libertação controlada</td>
<td>Gases, evaporantes ou dissolventes com reduzido impacto no meio ambiente</td>
<td>Reduzir a possibilidade de perder o navio ou a carga na sua totalidade (Danos no casco, redução da pressão interior, aumento da flutuabilidade, etc.).</td>
</tr>
<tr>
<td>Destruuição da carga ou do navio</td>
<td>Evaporantes, gás, dissolventes.</td>
<td>Considerar que de acordo com os processos de destruição utilizados, poderão surgir novas substâncias a considerar, dadas as reacções químicas das HNS.</td>
</tr>
<tr>
<td>Monitorização e inspecção</td>
<td>Flutuantes, afundantes</td>
<td>Monitorização aérea ou marítima de áreas sem riscos graves imediatos</td>
</tr>
<tr>
<td>Técnicas de combate a derrames de hidrocarbonetos</td>
<td>Flutuantes</td>
<td>Utilização de barreiras flutuantes, dispersantes ou recolha por aspiração.</td>
</tr>
<tr>
<td>Neutralização</td>
<td>Ácidos ou bases</td>
<td>Tentativa de manter os PH neutros</td>
</tr>
<tr>
<td>Cobrir ou aterrar sedimentos</td>
<td>Afundantes</td>
<td>Utilização de materiais inertes</td>
</tr>
</tbody>
</table>

Fontes: HELCOM\(^{29}\), Bonn Agreement\(^{30}\) e CEDRE\(^{31}\)

Torna-se necessário ter em consideração que nem sempre será possível adoptar uma postura pró-activa a um incidente, dadas as variadas causas e efeitos provocados pelos derrames de HNS. Em situações que envolvam incêndios, explosões, libertação de gases tóxicos e ou contaminantes do meio marinho e aéreo, dever-se-á adoptar medidas de resposta de salvaguarda, como sejam os avisos à navegação marítima e aérea, avisos às populações que vivam em áreas limitrofes, encerramento de praias e estâncias balneares e a proibição da pesca e apanha de marisco.

d. Casos-tipo

Complementa-se este Estudo com a inclusão de alguns exemplos de situações ocorridas, versando alguns casos-tipo de ocorrências e as medidas de resposta utilizadas, que possibilitarão o corroborar das conclusões que até ao momento foram sendo retiradas e expostas (EMSA, 2007: 52-55) e (MARINHA DGSFM, 1978: 43-46).

\(^{29}\) HELCOM *Response Manual Vol.2 Anx. 3 “Case histories of marine chemical accidents”*.

\(^{30}\) Bonn Agreement: “Chemical spills at sea- case studies”.

\(^{31}\) CEDRE “Database of chemical spills”.
Evaporantes/Gases: - Val Rosandra

No dia 28 de Abril de 1990, no porto de Brindisi, Itália, durante a deflagração de um incêndio, ocorreu um derrame de propileno\(^{32}\) no navio Val Rosandra. Face à tentativa falhada de extinção do incêndio pela guarnição, foi decidido rebocar o navio para uma distância de segurança de 50 quilómetros, por razões de segurança. Após algumas tentativas falhas de recuperação das HNS embarcadas e do estabelecimento de uma área de segurança de 12 milhas náuticas ao redor e de 6000 metros em altitude, decidiu-se efectuar um rombo controlado nos tanques de modo a poder ser efectuada a queima controlada dos mesmos gases embarcados. Finalmente, e depois da queima de todos os gases embarcados e as necessárias medições de controlo efectuadas ao ar, não foram reportados quaisquer danos ambientais.

Flutuantes: - Allegra

No dia 1 de Outubro de 1997, perante uma situação de colisão no Canal da Mancha, foram derramados no mar 900 toneladas de óleo de palma, provenientes do navio contentor Allegra. Face às temperaturas que então se verificavam, a substância derramada rapidamente solidificou formando uma camada sólida de aproximadamente 800 por 400 metros, que devido à acção do mar e do vento rapidamente se espalhou por uma área de 20 por 4 quilómetros, alcançando terra (Normandia) em porções de dimensões com 0,5 metros de diâmetro. Neste caso foram utilizadas técnicas semelhantes às usadas em derrames de hidrocarbonetos, efectuando-se a recolha do material flutuante com recurso a barreiras e aspiração.

Dissolventes: - Alchimist Emden

No dia 15 de Fevereiro de 1978, ocorreu o encaixe do navio cargueiro Alchimist Emden na Praia de Gambelas, Ericeira, sendo até à data o único incidente de relevo envolvendo as HNS, face ao enorme potencial poluidor afecto a um possível derrame, ocorrido em território nacional, envolvendo HNS. Face à natureza dos fundos e da batimetria pouco acentuada do local, o navio encontrava-se numa posição estável, e tanto o casco como os tanques contendo as HNS se encontravam inviolados. A carga consistia em vários produtos químicos líquidos, com maior predominância para a acetona\(^{33}\) (800 toneladas). Dado o facto de os contentores não estarem danificados decidiu-se recolher as

\(^{32}\) Propileno, também chamado propeno, apresenta-se normalmente como um gás incolor e altamente inflamável.

\(^{33}\) Apresenta-se normalmente como um líquido incolor e altamente inflamável, que se evapora e dissolve rapidamente.
Medidas de Combate à Poluição Marítima – Tendências e Lições Aprendidas

substâncias embarcadas, procedendo à sua trasferga para terra34. Esta operação de resgate das substâncias embarcadas, durou vários meses, tendo apenas ficado terminada no início de Julho do mesmo ano, beneficiando do facto de que o navio se encontrava fisicamente estável e nem o casco nem os tanques contendo HNS se encontravam danificados. Não ocorreu nenhum derrame durante a fase de recuperação das substâncias químicas, não tendo ocorrido portanto qualquer dano ambiental.

Finalizando este capítulo, possuímos agora dados suficientes para responder à terceira questão derivada, que indaga sobre quais as lições aprendidas nesta área que contribuíram para a alteração dos planos de intervenção nacionais. Partindo da hipótese terceira, que lhe está associada, e após as conclusões que retirámos do anteriormente exposto, validamos a mesma, dado que de acordo com o observado noutros países e UE, se provou a necessidade de alteração dos PI nacionais, com métodos e medidas dedicadas ao combate da poluição derivada das HNS. Os exemplos de outros países, tais como os pertencentes às organizações REMPEC e HELCOM, e principalmente a informação constantes nos manuais da IMO, CEDRE e EMSA, levaram-nos a concluir da enorme importância que existe para um Estado costeiro em possuir opções de resposta para todos os casos de poluição do mar, nomeadamente, para os hidrocarbonetos e para as HNS, considerando estes factos como lições apreendidas. Assim verificamos, sustentados pelas conclusões obtidas durante este estudo, que Portugal deverá investir na elaboração de PI dedicados às HNS, dado que para o caso dos hidrocarbonetos, estes planos existem, sendo adequados, ao contrário do que sucede no caso das HNS.

34 A opção de utilizar outro navio em apoio revelou-se imprópria face à enorme linha de mangueiras que necessariamente teria de ser utilizada, dado que para ser mantida uma posição segura, o navio de recolha teria de permanecer pelo menos a meia milha náutica da costa. As condições de mar que se verificavam no local igualmente dificultariam bastante as operações de recolha.
4. Contributos

Igualmente com base nas conclusões retiradas no final do capítulo dois, gostaríamos de nesta fase final deste trabalho de investigação, elaborar e propor um PI dedicado a incidentes de poluição com HNS, devendo esta proposta ser considerada apenas como mais um contributo de enriquecimento, dos PI actualmente existentes.

Esta proposta, que pretende contribuir para a satisfação dos requisitos de análise, avaliação e consequente tomada de decisão, em situações de resposta a ocorrências de poluição derivadas por HNS, é baseada na sua generalidade em manuais e guias operacionais existentes no âmbito da IMO e UE, dos quais destacamos os seguintes, por se constituírem de maior relevância:

A nossa proposta, que será apresentada graficamente no Apêndice 2, conterá informação dedicada aos Centros de Operações de Combate à Poluição, cuja missão é a de servir de suporte operacional e administrativo às acções de direcção e coordenação de um responsável pela execução de um Plano de Intervenção Local, e dedicada também aos Destacamentos de Intervenção Local de Combate à Poluição, cuja missão é a de executar as acções determinadas pelo Director ou Coordenador do mesmo Plano de Intervenção Local, tendentes a evitar o alastramento de derrames no mar ou no litoral e proceder às operações de limpeza, de modo a minimizar ou anular os seus efeitos (MTAMN-1, 2007: A.1).

As HNS serão brevemente definidas e catalogadas, com base nas suas características físico-químicas, identificando-se os seus comportamentos e respectivas consequências, originadoras de riscos para a saúde humana e o meio ambiente, de modo a propor as adequadas medidas e os melhores métodos de resposta a incidentes de poluição marítima.

4.a. Descrição do PI proposto

O modelo de PI que nos propusemos construir, tendo por principais bases as fontes supra referidas, é constituído na sua íntegra por esquemas de fluxo, aqui denominados de

35 OCA – “Operational Control Authorities”.
36 OSC – “On-Scene Coordinators”.
Diagramas de Decisão (DD), que serão os orientadores do processo de análise e decisão, em acções de combate à poluição do meio marinho derivadas por derrames de HNS.

4.a.1. **Diagrama de decisão n.º 1 (DD1)**

Inicialmente são indicadas várias questões delimitadoras, com o objectivo de ser devidamente efectuada a **observação e a análise situacional**. Seguidamente, inicia-se o processo de **avaliação de riscos**, considerando as características das HNS envolvidas.

O primeiro diagrama de decisão (DD1) expõe o início de uma acção de combate à poluição (**observação e análise situacional**), introduzindo seis questões iniciais de resposta afirmativa ou negativa, com as consequentes indicações de prosseguimento. Apresenta igualmente o fluxo de decisão inerente à **avaliação dos riscos** envolvidos, considerando as diferentes categorias de substâncias poluentes.

As perguntas cuja resposta decidirá o passo seguinte abordam a possibilidade de se parar ou reduzir os derrames, se a fonte do derrames pode ou não ser movida (rebocada ou por meios próprios), se uma libertação das HNS, desde que controlada, minimizará os riscos envolvidos, se as HNS estão perfeitamente localizadas dentro da sua fonte de derrame e finalmente, se existem obstruções à superfície ou no fundo das águas que lhe estão adjacentes.

Como já referido, e numa segunda fase, introduz-se o processo de avaliação dos riscos afectos ao manuseamento e operação das substâncias poluidoras (HNS), que se baseia nas suas características, e cuja identificação foi previamente efectuada sendo assim, igualmente determinada a sua categoria 37 em evaporantes, flutuantes, afundantes ou dissolventes.

O DD1 é portanto, o esquema de introdução ao processo de decisão, que expõe de um modo geral todo o processo de decisão para o combate à poluição do meio marinho afectado por derrame de HNS.

4.a.2. **Diagrama de decisão n.º 2 (DD2)**

Após a introdução ao processo de decisão, surge o DD2, baseado no DD1, mas já com os procedimentos indicados, para cada uma das seis perguntas iniciais. Cada um destes procedimentos, irá ser definido e explicado com instruções complementares, instruções essas que terão a designação de **Opções**. As Opções são também, e do mesmo modo que os DD, representadas graficamente no PI que nos propusemos elaborar.

As Opções dividir-se-ão em seis grupos, com as respectivas medidas de combate à

37 Representado graficamente na figura 2.
poluição, definidas para cada resposta inicialmente fornecida e indicando os procedimentos a tomar, com algumas variações, tentando abranger o maior número possível de situações.

Finalmente, a informação contida neste DD2, remete o utilizador para o seguinte diagrama (DD3), que está relacionado com as medidas a serem tomadas, em acordo com a análise dos riscos e os procedimentos adequados a cada tipo de HNS.

4.a.3. Diagrama de decisão n.º 3 (DD3)

Nesta fase do processo, o utilizador é confrontado com as subdivisões que as HNS divididas em categorias podem subentender38 (tóxicas, explosivas, inflamáveis, corrosivas e que causem impacto significativo na vida marinha e, ou bentónica). Para cada uma destas subdivisões, o DD3 remete o utilizador para o diagrama seguinte (DD4 a DD10), onde são descritos os procedimentos mais indicados e por esse motivo, aconselhados.

4.a.4. Diagramas de decisão n.º 4 a 10 (DD4 a DD10)

De acordo com o exposto no parágrafo anterior, estes diagramas descrevem e aconselham os procedimentos mais adequados para cada subdivisão das categorias das HNS.

38 Representado graficamente na figura 2.
Conclusões

Cumpre na fase final deste trabalho de investigação, apresentarmos as respostas ao problema inicialmente colocado, respostas essas que decorrem da verificação dos resultados face às hipóteses estabelecidas. O objectivo proposto foi o de analisar a organização nacional de resposta a situações de poluição no mar, dando especial ênfase às HNS, dada a recente doutrina europeia, aliada à grande importância deste assunto. Contextualizando a organização nacional com exemplos de outros países e organizações e as medidas e técnicas entretanto surgidas e validadas, propusemo-nos a elaborar da sua actualidade e efectividade, com o objectivo final de, caso finalmente julgado conveniente, propor alterações aos PI nacionais, numa tentativa de enriquecimento dos mesmos com uma proposta de PI dedicado às HNS.

Para cumprir os nossos objectivos propusemo-nos responder à seguinte questão de partida: *Qual o modelo de combate à poluição do meio marinho adequado à realidade actual?* O modelo de análise que nos guiou e que nos permitiu encontrar respostas a esta questão, apoia-se em três questões derivadas e consequentes hipóteses de trabalho formuladas, as quais procurámos verificar ao longo do presente estudo. Respondemos às questões derivadas, com base na validação ou não das hipóteses que lhes estavam afectas, recorrendo para tal à recolha de informação variada.

No decorrer deste estudo, constámos a obrigatoriedade de um Estado costeiro possuir uma estrutura de resposta a situações de poluição no mar por efeitos de derrame de substâncias poluentes, e para esse efeito a nível nacional, existe o PML. Este plano, tem, como vimos anteriormente, como objectivo o estabelecimento de um dispositivo de resposta a situações de derrames de hidrocarbonetos e outras substâncias perigosas (HNS), ou a situações de ameaça iminente desses mesmos derrames. Porém, os PI que foram criados na sequência da sua implementação, não se aplicam directamente às HNS.

O combate à poluição do mar por HNS é bastante complexo, e de um modo simplista será seguro dizer que pouco se pode fazer perante a maioria das HNS tóxicas ou explosivas, pois os danos que estas poderão causar ao ambiente (físico e humano) variam desde as HNS não muito perigosas, outras pouco conhecidas até às muito tóxicas e/ou explosivas (PAULO, 2011: 8). A utilização de dispersantes (substâncias que visam minimizar os danos, neutralizando, decompondo e dispersando as substâncias nocivas), á semelhança do que sucede com os hidrocarbonetos, podem igualmente ser aplicados às HNS, mas neste último caso, a situação torna-se mais complicada pois cada HNS exige o
seu “antídoto” específico, caso exista. Finalmente, deveremos considerar as HNS que são transportadas em contentores, o que viabiliza a contenção e recolha, mesmo que caiam ao mar. Neste caso, o problema surge na sua contenção e recolha, pois exige que o pessoal envolvido envergue EPI 39 bastante sofisticados, que podem exigir várias horas para vestir e despir, permitindo menos de uma hora de operação. São, obviamente, EPI muito caros; a DGAM não possui nenhum e os poucos que há em Portugal pertencem a bombeiros e fábricas de produtos químicos (PAULO, 2011: 9).

Respondendo objectivamente à questão central deste estudo, cumpre dizer que o modelo de combate à poluição existente em Portugal está adequado à realidade actual, mas apenas no que aos hidrocarbonetos diz respeito. Uma solução para este problema poderá ser a criação de PI semelhantes aos existentes para os hidrocarbonetos, mas dedicados às HNS, tais como a proposta que elaborámos no capítulo quatro e apresentámos graficamente no apêndice 2, possibilitando desta forma uma maior abrangência ao combate à poluição do meio marinho.

39 EPI - Equipamento de Protecção Individual.
Referências Bibliográficas

CEDRE (2004). *Vegetable Oil Spills at Sea*, Brest.

DL n.º 43/2002, de 02 de Março (Organização e atribuições do SAM).

DL n.º 44/2002, de 02 de Março (Atribuições, estrutura e organização da AMN. Criação da DGAM).

DL n.º 233/2009, de 14 de Setembro (Lei Orgânica da Marinha).

«http://129.3.20.41/eps/io/papers/0506/0506007.pdf»
Medidas de Combate à Poluição Marítima – Tendências e Lições Apreendidas

Portaria n.º 522/2001, de 25 de Maio (Composição e funcionamento do Conselho Consultivo do Sistema da Autoridade Marítima, actual Conselho Consultivo da Autoridade Marítima Nacional);

RCM n.º 6/2003, de 20 de Dezembro (Conceito Estratégico de Defesa Nacional).

APÊNDICES
APÊNDICE 1

LISTA DE CONVENÇÕES INTERNACIONAIS AFECTAS À POLUIÇÃO DO MEIO MARINHO

I - IMERSÕES EFECTUADAS POR NAVIÓS E AERONAVES.

 Convenção Internacional para a Prevenção da Poluição Marinha causada por Operações de Imersão de Detritos e outros Produtos. Aprovada para ratificação pelo Decreto regulamentar n.º 02/78, de 07 de Janeiro de 1978. As Partes Contratantes comprometem-se a proibir a imersão de substâncias particularmente perigosas enumeradas no Anexo I à Convenção. Para outras substâncias constantes no Anexo II, deverá haver uma autorização prévia especial para se proceder à sua imersão. Qualquer operação de imersão requer uma autorização prévia geral que só será concedida, após exame cuidadoso das características e composição dos detritos a eliminar, características do local de imersão, método a utilizar e impacto no meio ambiente. De salientar que os detritos radioactivos são abrangidos por este texto, existindo neste campo uma estreita cooperação técnico-científica com a Agência Internacional de Energia Atómica.

 - **LDC Amend 78**: Introduziram-se regras de controlo da incineração de detritos e outros produtos no mar.

 - **LDC Amend 80**: Proporciona uma lista de substâncias que requerem tratamento especial quando são incinerados (anexo II e III).

 - **LDC Amend 89**: Determina os procedimentos a serem seguidos para emitir as autorizações no caso de descargas permitidas em ocasiões especiais.

- **OSPAR 1992 - “Convention for the protection of the Marine Environment of the North-East Atlantic”**.

 Convenção para a Protecção do Meio Marinho do Atlântico Nordeste. Aprovada pelo Decreto Regulamentar n.º 59/97, de 31 de Outubro de 1997, substitui as Convenções de Oslo 1972 e de Paris 1974. As Partes contratantes tomam todas as medidas possíveis para prevenir e combater a poluição, bem como as medidas necessárias à protecção da zona marítima contra os efeitos prejudiciais das actividades humanas de forma a salvaguardar a saúde do homem e a preservar os ecossistemas marinhos. As partes contratantes aplicam os princípios de precaução e do poluidor pagador. Esta Convenção aplica-se à zona marítima definida no artigo 1º. Anexo I - Sobre a prevenção e o combate à poluição de origem telúrica. Anexo II - Sobre a prevenção e combate à poluição causada por operações de imersão ou de incineração.

II - CONVENÇÕES QUE VISAM A SALVAGUARDA DA VIDA HUMANA NO MAR E A SEGURANÇA NA NAVEGAÇÃO.

- **SOLAS 74 - “International Convention for the Safety of Life at Sea”**.

 Convenção Internacional para a Salvaguarda da Vida Humana no Mar.
Aprovada pelo Decreto do Governo n.º 79/83, de 14 de Outubro de 1983. Especifica as normas mínimas para a construção, equipamento e o emprego dos navios, compatíveis com a sua segurança.

- **PROTOCOLO 78**: Introduz um sistema de inspecções imprevistas e anuais. Reforça o controlo por parte do Estado de Bandeira. Torna obrigatório a instalação de um sistema de gás inerte e o radar em navios novos e existentes. Decreto do Governo n.º 78/83, de 14 de Outubro de 1983.

- **SOLAS Amend 81**: Emendam-se as provisões para máquinas, equipamentos eléctricos, sistemas de extinção de incêndios, meios de salvação e condições especiais para navios que transportam substâncias perigosas. Dão-se novos requerimentos para os equipamentos de navegação.

- **SOLAS Amend 88**: Melhora as acções de monitorização nos portos e áreas de carga. Exige a instalação por fases de um equipamento que utilize os satélites da INMARSAT para casos de emergência, a disseminação de informações de segurança, tais como as condições meteorológicas, rotas de navegação e comunicações entre navios.

- **SOLAS Amend 89**: Novos requisitos para a construção de navios, a protecção, detecção e extinção de incêndios. O código IBC é alterado e declarado obrigatório.

- **SOLAS Amend 92**: Emendas aos códigos IBC, IGC obrigatórios, e BCH (Code for the Construction and Equipment of Ships carrying Dangerous Chemicals in Bulk).

- **SOLAS Amend 94**: Os navios estão obrigados a informar a posição, identidade e outros dados relevantes para as acções de busca e salvamento, o controlo do tráfego marítimo, a previsão do clima e a luta contra a poluição marinha.

- **COLREG 72** - "Convention on the International Regulations for Prevention Collisions at Sea". Convenção sobre o Regulamento Internacional para Evitar Abalroamentos no Mar. Aprovada pelo Decreto Regulamentar n.º 55/78, de 27 de Junho de 1978. Reconhece o estabelecimento de zonas de separação de tráfego, regras de rumo e governo, assim como indicações técnicas para o emprego de faróis, marcas e sinais sonoros e luminosos.

- **COLREG Amend 81**: Emendas para permitir que os navios realizem operações de segurança nas áreas de separação de tráfego.
exemplo dragagem e peritagem.

- **COLREG Amend 87**: Regras adoptadas para os navios designados como de "construção especial".
- **COLREG Amend 89**: Destina-se a evitar o uso desnecessário da zona de tráfego ribeirinho.
- **COLREG Amend 93**: Emendas que afectam especialmente a posição das luzes de navegação.

III – CONVENÇÕES QUE SE DEBRUÇAM SOBRE AS CONSEQUÊNCIAS DE UM ACIDENTE.

 - **PROTOCOLO 76**: Prevê a unidade monetária para países membros e não membros do Fundo Monetário Internacional.
 - **PROTOCOLO 84**: O Limite de indemnização é aumentado.
 - **PROTOCOLO 92**: Introduz um novo sistema para facilitar o pagamento das indemnizações.

 - **PROTOCOLO 73**: Relativo à Intervenção em Alto Mar em Casos de Poluição por Substâncias Diferentes dos Hidrocarbonetos.
 - **INTERVENTION Amend 91**: Revisão da lista de substâncias nocivas contidas no Protocolo de 1973.

IV – POLUIÇÃO OPERACIONAL.

- **OILPOL 1954: “International Convention for the Preventions of Pollution of the Seas by Oil”**

 Convenção Internacional para a prevenção da Poluição do Mar por Hidrocarbonetos.

 Esta Convenção foi o primeiro acordo entre governos para prevenir a poluição marinha produzida pelas descargas dos navios. Estabelece medidas restritivas para as descargas de hidrocarbonetos no mar. Estabelece medidas restritivas para as descargas de hidrocarbonetos no mar. Aplica-se a todos os navios de tonelagem bruta igual ou superior a 500 tons. E aos navios-tanque de tonelagem bruta igual ou superior a 150 tons. Torna obrigatório a existência a bordo de um livro de registo de hidrocarbonetos, onde são registados os locais, datas e natureza das operações realizadas, tais como descargas de hidrocarbonetos eventualmente feitas para o mar, operações de carga, trasfega e descarga nos petroleiros, deslastragem e limpeza de tanques, etc.. São definidas normas relativas à disposição dos tanques de carga dos navios petroleiros e limitação das suas dimensões.

- **MARPOL 1973/78: “International Convention for the Prevention of Pollution from Ships”**

 Convenção Internacional para a Prevenção da Poluição por Navios.

 Aprovada pelo Decreto Regulamentar n.º 25/87, de 10 de Julho de 1987. Esta Convenção aplica-se a todos os navios e a todas as substâncias nocivas, impõe medidas restritivas e reforça os poderes dos Estados Contratantes. É composta por 20 artigos, 5 anexos e 2 Protocolos.

 Anexo I: regras técnicas para prevenir a poluição por hidrocarbonetos.

 Anexo II: regras técnicas para o controlo da poluição por substâncias líquidas nocivas transportadas a granel.

 Anexo III: regras para prevenir a contaminação por substâncias prejudiciais transportadas por via marítima em embalagens, contentores, tanques portátéis, camiões-tanques e vagões-cisternas.

 Anexo IV: regras para prevenir a poluição por esgotos sanitários dos navios.

 Anexo V: regras para prevenir a poluição por lixos dos navios.

 Anexo VI: regras para o controlo da poluição atmosférica produzida por navios, nomeadamente Sox e Nox e compostos orgânicos voláteis (ainda não entrou em vigor).

 - **PROTOCOLO I**: Disposições respeitantes aos relatórios sobre incidentes envolvendo substâncias prejudiciais.

 - **PROTOCOLO II**: Diz respeito à arbitragem.

 - **MARPOL Amend 84**: Emendas ao Anexo I: relativa a novos requisitos para prevenir as descargas de água de lastro misturada com combustível em áreas especiais.

 - **MARPOL Amend 85**: Emendas ao Anexo II e Protocolo I: incorpora os desenvolvimentos tecnológicos e faz o Código BC obrigatório no Anexo II. Estabelecem os requisitos para a elaboração de um relatório
Medidas de Combate à Poluição Marítima – Tendências e Lições Apreendidas

de incidentes resultantes de descargas de substâncias perigosas ao mar.

– **MARPOL Amend 87**: Emendas ao Anexo I: o golfo de Aden é designado área especial.

– **MARPOL Amend 89**: Emendas aos Anexos II e V: substituição da lista de substâncias químicas do Anexo II. Emendas aos códigos IBC e BCH declarados obrigatórios. O Mar do Norte é designado como área especial pelo Anexo V.

– **MARPOL Amend 90**: Emendas aos Anexos I e V: harmoniza o sistema de inspeções e certificados no código IBC e BCH. Uma área do Antártico é designada área especial.

– **MARPOL Amend 91**: Emendas aos anexos I e V: uma ampla região das Caraíbas é declarada área especial. Prevê-se para os navios a implementação de um plano de emergência contra a poluição marinha.

– **MARPOL Amend 92**: Emendas aos Anexos I, II e III: afecta o desenho dos navios tanques novos e existentes. A construção de navios provistos com casco duplo ou cobertura intermédia é obrigatória. Outros desenhos alternativos deverão submeter-se à aprovação. Introduzem-se outras medidas para reduzir os despejos de lastro ao mar, limitar o tamanho dos tanques de carga e implementar um programa de inspeções.

– **MARPOL Amend 95**: Emendas aos Anexos I, II, III e V. Prevê a inspecção dos navios nos portos dos outros países membros.

V - CÓDIGOS.

- **BCH**: “Code for the Construction and Equipment of Ships carrying Dangerous Chemicals in Bulk” - Destinado a navios construídos antes de 1 de Julho de 1986, considerando as necessidades de segurança no transporte de substâncias químicas perigosas.

- **IBC**: “International Code for the Construction and Equipment of Ships carrying Dangerous Chemicals in Bulk” - Regulamenta a construção de navios de transporte a granel de substâncias químicas perigosas. Lista as variadas substâncias químicas transportadas, correlacionando-as com os seus perigos e classificando-as por grau de perigosidade.

- **IGC**: “International Code for the Construction of Ships Carrying Liquefied Gases in Bulk” – Aplicável a navios de transporte de gás a granel, construídos após 1 de Julho de 1986.

VI - ACORDOS INTERNACIONAIS.

- **ACORDO DE BONNA 1983** “Bonn Agreement Counter Pollution”
 Acordo de cooperação para a protecção do Mar do Norte contra a poluição por hidrocarbonetos e outras substâncias perigosas. Decorrente dos trabalhos deste acordo, foi desenvolvido um manual de medidas anti-poluição (Bonn Agreement Counter Pollution Manual) que ainda hoje é uma referência nestas matérias, nomeadamente o capítulo 26 que é dedicado às HNS.

 Assinada pelos estados bálticos inicialmente em 1974 e refeita em 1992 com

- **BARCELONA 1976**: “Convention for the protection of the Mediterranean Sea against Pollution”.

Convenção para a Protecção do Mar Mediterrâneo contra a Poluição. As partes contratantes comprometem-se a tomar todas as medidas adequadas para evitar, reduzir e combater à poluição da zona do mar Mediterrâneo causada pelas descargas dos navios, pela exploração e utilização da plataforma continental e devidas aos derrames dos cursos de água, estabelecimentos costeiros ou emissores, ou provenientes de qualquer outra fonte situada no seu território.

- **PROTOCOLO**: As Partes Contratantes tomarão todas as medidas adequadas para evitar e reduzir a poluição da zona do mar Mediterrâneo resultante das operações de imersão efectuadas pelos navios e aeronaves. É proibida a imersão de resíduos ou outras matérias enumeradas no Anexo I. A imersão de resíduos ou outras matérias enumeradas no Anexo II, fica dependente, da concessão prévia, pelas autoridades nacionais competentes, de uma autorização específica.

- **OPRC 1990** “The International Convention on Oil Preparedness, Response and cooperation 1990”

Convenção Internacional sobre a Prevenção, Actuação e Cooperação no Combate à Poluição por hidrocarbonetos. Aprovada pelo Decreto Regulamentar n.º 08/2006, de 10 de Janeiro. Convenção adoptada em Londres a 30 de Novembro que visa os procedimentos de notificação relativos a acidentes de poluição por hidrocarbonetos. Prevê as medidas a adoptar face à recepção de um comunicado relativo a um incidente de poluição, sistemas nacionais e regionais de preparação e combate a incidentes de poluição (planos de contingência e de intervenção), cooperação internacional, investigação e desenvolvimento e cooperação técnica no combate à poluição por hidrocarbonetos.

- **Acordo de Lisboa 1990 (CILPAN)**

- **OPRC-HNS Protocol 2000** “The Protocol on Preparedness, Response and cooperation to Pollution Incidents by Hazardous and Noxious Substances”

Convenção Internacional sobre a Prevenção, Actuação e Cooperação no
Combate à Poluição por HNS.
Aprovada pelo Decreto Regulamentar n.º 12/2006, de 16 de Março.
Convenção baseada na doutrina OPRC 1990, que visa os procedimentos de notificação relativos a acidentes de poluição por HNS. Prevê as medidas a adoptar face à recepção de um comunicado relativo a um incidente de poluição, sistemas nacionais e regionais de preparação e combate a incidentes de poluição (planos de contingência e de intervenção), cooperação internacional, investigação e desenvolvimento e cooperação técnica no combate à poluição por HNS.

- **CNUDM:** Convenção das Nações Unidas sobre o Direito do Mar
 Artigo 1º: Definição de Poluição Marítima.
 Parte XII: Protecção e preservação do meio marinho, Secção 5: Regras internacionais e legislação nacional para prevenir, reduzir e controlar a poluição do meio marinho.
APÊNDICE 2

PROPOSTA DE PLANO DE INTERVENÇÃO DEDICADO À POLUIÇÃO DERIVADA DE HNS

Diagrama de Decisão 1 (DD1)

1. Existe a possibilidade de parar o derrame? Sim/Parcialmente → Reduzir ou parar o derrame
 Não → Insatisfatoriamente

2. Existe a possibilidade de reduzir o derrame através da mudança de local da fonte? Sim → Mudar o local da fonte para reduzir o derrame
 Não → Insatisfatoriamente

3. O derrame controlado minimizará os riscos? Sim → Efectuar derrame controlado
 Não → Insatisfatoriamente

4. É conhecida a localização das HNS? Sim → Localizar as HNS
 Não → Insatisfatoriamente

5. Existem obstáculos à superfície? Sim → Remover obstáculos
 Não → Insatisfatoriamente

6. Existem obstáculos à sub-superfície? Sim → Remover obstáculos
 Não → Insatisfatoriamente

7. Avaliação dos riscos
 Significativos
 → Evaporantes
 → Tóxicos (ar)
 → Explosivos
 → Impacto na vida marinha
 → Tóxicos (água)
 → Impacto na vida marinha
 → Inflamáveis
 → Corrosivos
 → Fluotantes
 → Dissolventes
 → Afundantes
 Insignificantes → Não actuar
Diagrama de Decisão 2 (DD2)

1. **Existe a possibilidade de parar o derrame?**
 - **Sim/Parcialmente**: Reduzir ou parar o derrame → **Opção 1**
 - **Insatisfatoriamente**:
 - **Não**

2. **Existem obstáculos à superfície?**
 - **Sim**: Remover obstáculos → **Opção 5**
 - **Insatisfatoriamente**:
 - **Não**

3. **Existem obstáculos à sub-superfície?**
 - **Sim**: Remover obstáculos → **Opção 6**
 - **Insatisfatoriamente**:
 - **Não**

4. **Avanço da poluição**
 - **Insatisfatoriamente**:
 - **Não**

5. **Avanço da poluição**
 - **Significativos**:
 - **Não actuar**
 - **Insignificantes**:
 - **Diag. de Decisão 3 (DD3)**

6. **Existência de conhecimento de localização das HNS?**
 - **Sim**: Localizar as HNS → **Opção 4**
 - **Insatisfatoriamente**:
 - **Não**

7. **Possibilidade de reduzir o derrame através da mudança de local da fonte?**
 - **Sim**: Mudar o local da fonte para reduzir o derrame → **Opção 2**
 - **Insatisfatoriamente**:
 - **Não**

8. **O derrame controlado minimizará os riscos?**
 - **Sim**: Efectuar derrame controlado → **Opção 3**
 - **Insatisfatoriamente**:
 - **Não**

Notas

- **Medidas de Combate à Poluição Marítima – Tendências e Lições Apreendidas**
- **CTEN M Santos Jorge**
- **A-10**
Opção 1:

| Existe a possibilidade de parar o derrame? | Sim/Parcialmente | Reduzir ou parar o derrame |

OBJECTIVO – Eliminar ou reduzir o derramamento é a medida de resposta mais eficaz.

Métodos (M) e Instruções:
M1 – Encerrar os compartimentos do navio.
M2 – Tapar o rombo ou abertura (nos seguintes casos):
 - Caso 1: Derrame de gás comprimido desde que não inflamado.
 - Caso 2: Derrame de gás liquefeito desde que não inflamado.
 - Caso 3: Derrame de gás refrigerado desde que não inflamado.
 - Caso 4: Derrame de líquidos desde que não inflamados.
M3 – Transferência de líquidos através de sistemas de esgoto, quando a fuga não possa ser colmatada.
 (desde que estejam disponíveis sistemas resistentes à eventual corrosão provocada pelas substâncias a esgotar e estas não estejam num estado de inflamação).

Opção 2:

| Existe a possibilidade de reduzir o derrame através da mudança de local da fonte? | Sim | Mudar o local da fonte para reduzir o derrame |

OBJECTIVO – Restringir eventuais futuros derrames e/ou reduzir as suas consequências.

Métodos (M) e Instruções:
M1 – Mudar a posição ou postura do navio.
M2 - Reboque para uma zona menos vulnerável (reboque para longe das zonas costeiras).
M3 – Transferência da carga (sólidos a granel) ou remoção de contentores.
Opção 3:

O derrame controlado minimizará os riscos? Sim/Parcialmente Efectuar derrame controlado

OBJECTIVO – O derramamento controlado poderá reduzir o fluxo de substâncias perigosas e o risco de ocorrer um súbito derrame de grandes proporções.

Métodos (M) e Instruções:
M1 – Derramamento controlado (se necessário, face à possibilidade de afundamento do navio, acautelando as medidas de segurança do pessoal envolvido e os riscos ecológicos para o meio marinho, em acordo com as características das substâncias derramadas).
M2 – Destrução completa mas controlada ou afundamento do navio (utilizar este método apenas quando não existir outra alternativa, face aos riscos envolvidos para o pessoal e meio marinho).

Opção 4:

É conhecida a localização das HNS? Sim Localizar as HNS

OBJECTIVO – Localizar as HNS (a granel ou em contentores) e monitorizar a sua deriva.

Métodos (M) e Instruções:
M1 – Manter sob vigilância e monitorização as substâncias derramadas. (utilização de métodos tradicionais de monitorização e vigilância e as facilidades de detecção e monitorização por satélite, como o sistema CleanSeaNet, disponibilizado pela EMSA).
Opção 5:

Existem obstáculos à superfície? **Sim** → Remover obstáculos

OBJECTIVO – O objectivo será a remoção de quaisquer obstáculos que existam à superfície e que constituam um entrave para o uso efectivo do mar, tais como contentores à deriva, que impeçam ou dificultem o tráfego marítimo ou a actividade da pesca.

Métodos (M) e Instruções:
M1 – Reboque do navio sinistrado para fora da área (Opção 2 – M2)
M2 – Remoção dos obstáculos que se encontrem à superfície.

Opção 6:

Existem obstáculos no leito marinho? **Sim** → Remover obstáculos

OBJECTIVO – Remover as obstruções que constituam um entrave para o uso efectivo do mar, afectem cabos submarinos ou afectem pipelines, tais como contentores ou mesmo navios afundados com HNS a bordo.

Métodos (M) e Instruções:
M1 – Em algumas circunstâncias, e com o navio afundado, será possível recuperá-lo através da utilização de métodos de flutuação, tais como a introdução e aplicação no mesmo de materiais insufláveis ou com o uso de gruas apropriadas.
Diagrama de Decisão 3 (DD3)

Avaliação dos riscos

Insignificantes

Não actuar

Significativos

Evaporantes

Flutuantes

Dissolventes

Afundantes

Tóxicos (a ar)

Inflamáveis

Tóxicos (água)

Impacto na vida marinha

Explosivos

Impacto na vida marinha bentônica

Corrosivos

DD4

DD5

DD6

DD7

DD8

DD9

DD10
Diagrama de Decisão 4 (DD4)
(Substâncias tóxicas por inalação)

Tóxicos (ar)

Concentração HNS > MAC (nota1)

Não
Monitorizar

Sim

Existência de riscos graves para:
• pesca;
• tráfego marítimo;
• tráfego aéreo;
• outros.

Sim (nota2)

• Interditar a área.
• Efectuar avisos à navegação.

Monitorizar

Utilização das seguintes técnicas:
• Ventilação;
• Utilização de sprays de água vaporizada;
• Considerar evacuação temporária ou parcial.
(nota3)

Nota 1:
MAC—Maximum Allowable Concentration
Este valor é retirado das tabelas descritivas de cada substância, sendo medido em ml/m³ ou mg/m³ e define a concentração máxima em partes por mil (ppm) na atmosfera, na qual o ser humano pode trabalhar em segurança por um período máximo de oito horas, cinco dias por semana.

- Máximo risco: substâncias com MAC > 500 ppm;
- Baixo risco: substâncias com 500 > MAC > 100 ppm;
- Risco moderado: substâncias com 100 > MAC > 10 ppm;
- Risco elevado: substâncias com MAC < 10 ppm;

Nota 2:
De um modo geral, o acesso e o uso das áreas afectadas deverá ser restringido, de acordo com os riscos inerentes às substâncias derramadas. A monitorização desta área, será fundamental para a decisão de impor ou posteriormente levantar a restrição de acesso, assim como a determinação da extensão dessa mesma área restrita.

Nota 3:
A ventilação ou a utilização de sprays de água vaporizada, dado que o vapor diluirá as nuvens de gas, reduzindo a concentração das substâncias derramadas e por outro lado facilitando a sua identificação visual.
Diagrama de Decisão 5 (DD5)
(Substâncias produtoras de gases explosivos ou nuvens de vapor explosivo)

Explosivos (Gás, vapor e nuvens)

Concentração > 10% LEL (nota 1)

Não → Monitorizar

Sim → Ameaças para:
• pesca;
• tráfego marítimo;
• tráfego aéreo;
• outros.

Sim → Interditar a área;
• Efetuar avisos à navegação.

Monitorizar

Utilização das seguintes técnicas:
• Utilização de sprays de água;
• Remoção de fontes de ignição;
• Prevenir ignições;
• Ventilação;
• Considerar evacuação temporária ou parcial.
(nota 3)

Nota 1:
LEL – Lower Explosion Limit
Este valor é retirado das tabelas descritivas de cada substância, sendo determinado como a percentagem mínima da substância gaseificada à qual essa mesma substância poderá ocorrer uma explosão. Para valores inferiores ao LEL, uma explosão apenas ocorrerá se a mesma substância gaseificada for aplicado calor (energia), definindo uma margem de segurança.

Nota 2:
De um modo geral, o acesso e o uso das áreas afectadas deverá ser restringido, de acordo com os riscos inerentes às substâncias derramadas. A monitorização desta área, será fundamental para a decisão de impor ou posteriormente levantar a restrição de acesso, assim como a determinação da extensão dessa mesma área restrita.

Nota 3:
Ventilação ou a utilização de sprays de água vaporizada, dado que o vapor diluirá as nuvens de gás, reduzindo a concentração das substâncias derramadas, diminuirá a sua temperatura e por outro lado facilita a sua identificação visual.
Restrições na utilização de fontes de calor, tais como motores de embarcações do pessoal envolvido, deverão ser acuteladas, para evitar efeitos de ignição.
Diagrama de Decisão 6 (DD6)
(Substâncias inflamáveis flutuantes)

Inflamáveis

Ponto de ignição < Temperatura ambiente (nota1)
Sim

Ameaças para:
• pesca;
• tráfego marítimo;
• tráfego aéreo;
• outros.
Sim (nota2)

• Interditar a área;
• Efectuar avisos à navegação.

Não
Monitorizar

Utilização das seguintes técnicas:
• Remoção de fontes de ignição;
• Utilização de sprays de água;
• Ventilação;
• Considerar evacuação temporária ou parcial.
(nota3)
Monitorizar

Nota 1:
O ponto de ignição de um líquido é o mais baixo valor de temperatura, à qual está pode ser inflamada, considerando as percentagens de oxigênio que o envolvem. Este valor é retirado das tabelas descritivas de cada substância. Substâncias com este valor inferior à temperatura ambiente (+/- 21°C), deverão ser consideradas extremamente inflamáveis. Dado que o termo inflamável e explosivo estão directamente relacionados, deverão ser consideradas as precauções elencadas no DD 5.

Nota 2:
De um modo geral, o acesso e uso das áreas afectadas deverá ser restringido, de acordo com os riscos inerentes às substâncias derramadas. A monitorização desta área, será fundamental para a decisão de impor ou posteriormente levantar a restrição de acesso, assim como a determinação da extensão dessa mesma área restrita.

Nota 3:
Ventilação ou a utilização de sprays de água vaporizada, dado que o vapor diluirá as nuvens de gás, reduzindo a concentração das substâncias derramadas, diminuirá a sua temperatura e por outro lado facilita a sua identificação visual.
Restrições na utilização de fontes de calor.
Diagrama de Decisão 7 (DD7)

(Substâncias flutuantes)

Flutuantes

Detectável?

Não

Sim

Ameaças para:
- pesca
- vida marinha;
- tráfego marítimo;
- fontes de captação de águas;
- outros.

Sim

(nota2)

- Interditar a área;
- Efectuar avisos à navegação.

Monitorizar

Considerar utilização das seguintes técnicas:

- Dispersão no mar
- Recolha pormar
- Recolha portemar

- Dispersão química;
- Agitação mecânica;
- Dispersão natural.

- Solidificantes;
- Solventes;
- Barreiras;
- Aspiração.

Recuperação mecânica

Nota 1:
A viscosidade das substâncias, que será retirada das tabelas das suas características, é um dado extremamente importante, dado permitir a sua identificação visual.

Nota 2:
De um modo geral, o acesso e o uso das áreas afectadas deverá ser restringido, de acordo com os riscos inerentes às substâncias derramadas. A monitorização desta área, será fundamental para a decisão de impor ou posteriormente levantar a restrição de acesso, assim como a determinação da extensão dessa mesma área restrita.
Diagrama de Decisão 8 (DD8)
(Substâncias tóxicas solúveis)

Tóxicos (água)

Concentração HNS significativa

Não → **Monitorizar**

Sim → **Ameaças para:**
- pesca;
- tráfego marítimo;
- fontes de captação de água;
- outros.

Sim (nota1)

Interditar a área;
- Efectuar avisos à navegação.

Monitorizar

Aplicação dispersantes. (nota2)

Nota 1:
De um modo geral, o acesso e o uso das áreas afectadas deverá ser restringido, de acordo com os riscos inerentes às substâncias derramadas. A monitorização desta área, será fundamental para a decisão de impor ou posteriormente levantar a restrição de acesso, assim como a determinação da extensão dessa mesma área restrita.

Nota 2:
A aplicação de dispersantes ou diluentes depende essencialmente das substâncias envolvidas, dado que para uma haverá o correspondente “antidoto”. Deverão ser tidas em consideração as tabelas descritivas das substâncias derramadas e caso possível, deverá ser aplicado o dispersante adequado.
Diagrama de Decisão 9 (DD9)
(Substâncias corrosivas solúveis)

Corrosivos

HNS ácida ou básica?
(nota1)

Não
Monitorizar

Sim

Ameaças para:
• pesca;
• tráfego marítimo;
• fontes de captação de água;
• outros.

Sim
(nota2)

• Interditar a área;
• Efectuar avisos à navegação.

Monitorizar

• Neutralização;
• Diluição;
• Protecção.
(nota3)

Nota 1:
A determinação do PH das substância envolvidas é determinante na avaliação dos riscos de corrosão. Algumas substâncias de valores de PH muito reduzidos ou muito elevados, (ácidos ou bases), quando em contacto com a água reagem, produzindo vapores que são irritantes das mucosas e partes moles do corpo humano, além de corrosivos.

Nota 2:
De um modo geral, o acesso e o uso das áreas afectadas deverá ser restringido, de acordo com os riscos inerentes às substâncias derramadas. A monitorização desta área, será fundamental para a decisão de impor ou posteriormente levantar a restrição de acesso, assim como a determinação da extensão dessa mesma área restrita.

Nota 3:
A aplicação de substâncias com PH inverso às substâncias derramadas é uma das formas de neutralização dos efeitos produzidos.
Diagrama de Decisão 10 (DD10)
(Substâncias afundantes prejudiciais à vida na zona bentónica)

Afundantes

Detectável?
(nota1)

Não

Sim

Monitorizar

Ameaças para:
• pesca;
• fontes de captação
de água;
• outros.

Sim
(nota2)

• Interditar a área;
• Efectuar avisos à
navegação.

Monitorizar

• Dragagem;
• Aterragem.

Nota 1:
Na medida do possível, será muito importante detectar e estimar a quantidade de substâncias
afundantes, dado que estas envolverão os fundos adjacentes, eliminando ou afectando directamente
toda a vida bentónica da área afectada.

Nota 2:
De um modo geral, o acesso e o uso das áreas afectadas deverá ser restringido, de acordo com os
riscos inerentes às substâncias derramadas. A monitorização desta área, será fundamental para a
decisão de impor ou posteriormente levantar a restrição de acesso, assim como a determinação da
extensão dessa mesma área restrita.
APÊNDICE 3

RESUMO DA ENTREVISTA EFECTUADA AO VALM SILVA CARREIRA

A conversa com o VALM Silva Carreira decorreu no sentido de proporcionar a resposta à questão central deste Estudo: Qual o modelo de combate à poluição marítima adequado à realidade actual?"

A experiência acumulada no desempenho do seu actual cargo associada à sua formação jurídica e a restante vasta experiência profissional que possui, levou-o a questionar se já teríamos orientado o estudo, através de questões derivadas e consequente formulação de hipóteses.

Revelou-se agradado com o tema, principalmente dada a delimitação que, ainda que numa fase muito inicial, estávamos já a preparar, dado que, conforme realçou, o combate à poluição derivada de hidrocarbonetos em Portugal está bem orientado, ao passo que no que respeita às HNS, nem tanto, ainda que os poucos casos existentes de realce, tenham sido casos de sucesso.

Quando o questionámos sobre este facto, referiu que por algum lado se teria que começar, e dado que a “visibilidade” da poluição derivada dos hidrocarbonetos e o seu consequente impacto na opinião pública são deveras grandes, influenciando nesse sentido o poder político, sendo que estes factos associados ao facto de que tanto em Portugal como internacionalmente este tipo de poluição estar amplamente coberto por doutrina, se tornou mais óbvio investir inicialmente neste tipo de problema. Continuou referindo que, naturalmente a poluição originada por HNS, merece o mesmo tipo de atenção, até porque o PML o refere especificamente, e que actualmente, e principalmente desde a criação da EMSA, se começou a investir especificamente neste tipo de combate à poluição do mar. Neste sentido, realça a importância de se investir na prevenção e sensibilização das comunidades afectas ao mar para estes temas, referindo igualmente que na prevenção estaria o fulcro do sucesso. Ainda relativamente ao facto da existência de “fraca” visibilidade resultante dos derrames por HNS, refere a enorme importância do aspecto legal, considerando já os aspectos coercivos resultantes do não cumprimento da lei. Faz-nos perceber que a comunidade científica deveria investir na descrição e prova científica dos danos que um derrame de HNS pode provocar e que pela sua fraca visibilidade imediata, muitas vezes é difícil de ser provado em tribunal, reiterando de novo a importância da existência de acções de sensibilização para tal.

Na abordagem das questões derivadas, concentra a sua atenção na QD2, onde questionamos a existência planos de intervenção nacionais de combate à poluição, que sejam adequados para todas as substâncias passíveis de ser derramadas no mar, que originem focos e situações de poluição. Refere que os existentes planos de intervenção estão de acordo com o PML e que apenas necessitaram de melhorias ou enriquecimento, nomeadamente para a questão das HNS, concordando finalmente com a questão. Quando abordamos a questão do Programa Estratégico de Apoio ao PML não ter sido ainda aprovado, informa-nos da dificuldade de conjugar interesses políticos com as agendas dos ministros que tutelam estas áreas, originando atrasos significativos, principalmente porque o documento está em draft e pronto para aprovação desde Agosto de 1994.

Contribuindo no final da entrevista para a resposta à questão central do nosso trabalho, informa-nos que esse modelo de combate à poluição deverá subentender todas as substâncias passíveis de poluir o meio marinho, cumprindo o estipulado no PML, nomeadamente hidrocarbonetos e HNS.

Finalmente informa-nos da total disponibilidade da DGAM, e nomeadamente do Serviço de Combate à Poluição do Mar por Hidrocarbonetos, de prestar todo o apoio complementar necessário no desenvolver do trabalho de investigação que nos propusemos realizar.