mTOR Pathway Overactivation in BRAF Mutated Papillary Thyroid Carcinoma

Alexandra Faustino,* Joana P. Couto,* Helena Pópulo, Ana Sofia Rocha, Fernando Pardal, José Manuel Cameselle-Teijeiro, José Manuel Lopes, Manuel Sobrinho-Simões, and Paula Soares

Institute of Molecular Pathology and Immunology of the University of Porto, Cancer Biology (A.F., J.P.C., H.P., A.S.R., J.M.L., M.S.-S., P.S.), 4200-465 Porto, Portugal; Medical Faculty of the University of Porto (J.P.C., H.P., J.M.L., M.S.-S., P.S.), 4200-465 Porto, Portugal; Department of Pathology (F.P.), Hospital de São Marcos, 4701-965 Braga, Portugal; Department of Anatomic Pathology (J.M.C.-T.), Clinical University Hospital, SERGAS, University of Santiago de Compostela, 15705 Santiago de Compostela, Spain; and Department of Pathology (J.M.L., M.S.-S.), Hospital São João, 4200-319 Porto, Portugal

Context: There are several genetic and molecular evidences suggesting dysregulation of the mammalian target of rapamycin (mTOR) pathway in thyroid neoplasia. Activation of the phosphatidylinositol-3-kinase/AKT pathway by RET/PTC and mutant RAS has already been demonstrated, but no data have been reported for the BRAFV600E mutation.

Objective: The aim of this study was to evaluate the activation pattern of the mTOR pathway in malignant thyroid lesions and whether it may be correlated with known genetic alterations, as well as to explore the mechanisms underlying mTOR pathway activation in these neoplasias.

Results: We observed, by immunohistochemical evaluation, an up-regulation/activation of the mTOR pathway proteins in thyroid cancer, particularly in conventional papillary thyroid carcinoma (cPTC). Overactivation of the mTOR signaling was particularly evident in cPTC samples harboring the BRAFV600E mutation. Transfection assays with BRAF expression vectors as well as BRAF knockdown by small interfering RNA revealed a positive association between BRAF expression and mTOR pathway activation, which appears to be mediated by pLKB1 Ser428, and emerged as a possible mechanism contributing to the association between BRAF mutation and mTOR pathway up-regulation. When we evaluated the rapamycin in the growth of thyroid cancer cell lines, we detected that cell lines with activating mutations in the MAPK pathway show a higher sensitivity to this drug.

Conclusions: We determined that the AKT/mTOR pathway is particularly overactivated in human cPTC harboring the BRAFV600E mutation. Moreover, our results suggest that the mTOR pathway could be a good target to enhance therapy effects in certain types of thyroid carcinoma, namely in those harboring the BRAFV600E mutation. (J Clin Endocrinol Metab 97: E1139–E1149, 2012)
mTORC1 effectors (3). mTORC2, composed of mTOR, mLST8/GβL, mSin1, protor, and rictor, is insensitive to acute rapamycin treatment and is involved in the regulation of cell proliferation and survival through phosphorylation of AKT (at Ser473) (4).

mTOR regulates cell growth by integrating signals derived from different inputs (2). Regulation of mTOR by growth factors classically occurs through the phosphatidylinositol-3-kinase (PI3K)/AKT pathway, which is counteracted by the phosphatase and tensin homolog (PTEN). The cellular energy status is connected to mTORC1 through AMP-activated protein kinase (AMPK), which is activated in response to energy stress (5). The tumor suppressor liver kinase B1 (LKB1) has been identified as the main upstream kinase of AMPK (6). LKB1 binds and phosphorylates AMPK on its Thr172, activating this kinase in case of energy deprivation, which in turn inhibits mTORC1 signaling (7). Recent data reported that BRAF mutant melanoma cells have a dysfunctional LKB1-AMPK-mTOR energy stress sensor (8, 9). In BRAF^{V600E}-transformed melanoma cells, LKB1 is phosphorylated by the BRAF^{V600E} downstream kinases ERK and p90RSK, compromising its ability to bind and activate AMPK (8).

Mutations or rearrangement of genes codifying for components of the MAPK pathway seem to be crucial for the transformation process in thyroid (10), and thyroid tumors show a strong genotype-phenotype relationship (11). Papillary thyroid carcinoma (PTC) is the most common thyroid malignancy (85–90% (10)), being genetically characterized by a high incidence of mutations in the BRAF gene (particularly BRAF^{V600E}) and by RET/PTC rearrangements (12, 13).

In thyroid lesions, information on mTOR expression is not available, to the best of our knowledge. Despite this, PI3K/AKT pathway genetic alterations have been reported in follicular thyroid carcinoma (FTC) and PTC, namely PTEN promoter hypermethylation (14), PTEN loss of heterozygosity (15, 16), and PI3KCA amplification (17, 18), suggesting a role for mTOR signaling in thyroid neoplasia. Furthermore, previous data demonstrated that RET/PTC rearrangements and RAS mutations can lead to the activation of the PI3K/AKT pathway (19–23), whereas no data have been reported for the BRAF^{V600E}
mutation.

The aims of this study were to evaluate the activation pattern of the mTOR signaling pathway in malignant thyroid lesions, to verify whether it may be correlated with known genetic alterations, and to explore the mechanisms underlying mTOR pathway activation in these neoplasias.

Materials and Methods

Thyroid samples and tissue microarray construction

Thyroid tissue specimens (formalin-fixed paraffin-embedded [FFPE]) of 133 patients were collected from the files of the Hospital São João/Medical Faculty of the University of Porto, Portugal; the Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal; Clinical University Hospital (CHUS), University of Santiago de Compostela, Spain; and Hospital S Marcos, Portugal. Cases were histologically classified by experienced pathologists (J.M.C.-T., F.P., and M.S.-S.) in FTC (n = 20), follicular variant of PTC (FVPTC; n = 22), conventional PTC (cPTC; n = 60), and cPTC metastases (n = 21), and representative areas were selected. Areas of adjacent normal thyroid (n = 34) were also selected. Duplicate tissue cores 2.0 mm in diameter were extracted from the selected areas and arrayed on a recipient paraffin block. All procedures with samples were in accordance with the institutional and national ethical rules.

Immunohistochemistry

The following antibodies were used: rabbit monoclonal antibodies specific for PTEN (1:75), phospho-AKT Ser473 (1:50), phospho-AKT Thr308 (1:50), mTOR (1:50), phospho-S6 Ser235/236 (1:75), phospho-4EBP1 Thr37/46 (1:200), raptor (1:75), and phospho-LKB1 Ser428 (1:50), all from Cell Signaling Technology (Danvers, MA); rabbit polyclonal antibody specific for phospho-mTOR Ser2448 (1:50; Cell Signaling Technology); and antirictor mouse monoclonal antibody (1:500; Abnova, Jhongli City, Taiwan). The antibodies were validated in previous work of our group for immunohistochemical analysis in FFPE samples (24, 25).

Sections were subjected to heat-induced antigen retrieval in 1 mM EDTA (pH 8.0) for the anti-phospho-S6 Ser235/236 antibody or in 10 mM sodium citrate buffer (pH 6.0) for the remaining antibodies, followed by blocking of endogenous peroxidase activity (3% of H₂O₂) and of nonspecific binding with Large Volume Ultra V Block reagent (Thermo Scientific; Danvers, MA). Sections were incubated with the primary antibody overnight at 4°C. Negative controls were carried out by omitting the primary antibody.

The detection was performed with a labeled streptavidin-biotin immunoperoxidase detection system (Thermo Scientific/Lab Vision, Fremont, CA). Sections were incubated with the anti-phospho-AKT Thr308 antibody, the immunostaining was blindly semiquantitatively evaluated in terms of staining intensity (0, negative; 1, weak; 2, intermediate; 3, strong) and percentage of stained cells (0, <5%; 1, 5 to 25%; 2, 25 to 50%; 3, 50 to 75%; 4, >75%). An immunohistostaining score was calculated by multiplying the proportion of positive cells by the intensity of the staining, with 12 being the maximum score. The cellular localization was also evaluated as membranar and/or cytoplasmic and/or nuclear.

DNA extraction and mutational analysis of BRAF

Selected representative areas were manually dissected from 10-μm sections of FFPE cases of cPTC. DNA extraction was
based on salting-out technology (CitogeneDNA Purification Kits; Citomed, Lisbon, Portugal).

Screening for BRAF mutations was restricted to exon 15, which was amplified by PCR and sequenced on an ABI Prism 3130 xL Automatic sequencer (Perkin-Elmer, Foster City, CA).

Cell lines, BRAF vectors, and transfection assays

T243, TPc1, K1, 8505C, C643, T241, and XCT-1 thyroid cancer cell lines used in this study were already characterized at the molecular and genotypic level (Supplemental Table 5) (26, 27). All cell lines were maintained in RPMI supplemented with 10% (vol/vol) fetal bovine serum (FBS) and antibiotics [1% (vol/vol) Pen Strep and 0.5% (vol/vol) fungizone; all from Gibco, Invitrogen, Carlsbad, CA], except XCT-1, which was cultured in DMEM/F12 (Gibco, Invitrogen) supplemented with 10% (vol/vol) FBS, insulin at 10 μg/ml, TSH at 10mU/ml (Sigma-Aldrich, St. Louis, MO), and antibiotics. Human embryonic kidney HEK293 cells used in the transfection assays were cultured in DMEM supplemented with 10% (vol/vol) FBS and antibiotics. All cells were grown in a humidified incubator with 5% CO2 at 37°C.

The expression vectors for BRAF were constructed in-house by insertion of the coding sequences of BRAFWT and BRAFV600E into the multiple cloning site of pCMV empty vector (pCMV-BRAFWT and pCMV-BRAFV600E). After transformation, the clones were subjected to automated sequencing to verify the integrity of the BRAF sequence.

For transfection assays, HEK293 cells were transiently transfected by the calcium phosphate coprecipitation method with 5 μg of DNA, including 100 ng of expression plasmid (pCMV-empty vector, pCMV-BRAFWT, or pCMV-BRAFV600E), 100 ng of pEGFP-C1 (Clontech, Mountain View, CA) to monitor transfection efficiency, and 4.8 μg of “carrier DNA” - pUC18. Confirmation of BRAF expression as well as of pERK 1/2 (as a read-out of BRAF activity) was done by Western blotting.

The small interfering RNA (siRNA) assays were performed as previously reported (28), using 50 nm of oligo BRAF (BRAF-C2) and 25 nm of LKB1 siRNA (Smartpool from Dharmacon; Thermo Scientific). Cells were seeded and transfected with Lipofectamine 2000, and cell lysates were obtained after 48 h. BRAF and LKB1 down-regulation was confirmed by Western blotting.

Growth inhibition assay

The growth of thyroid cancer cell lines (3 × 10⁴ C643 and K1 cells; 5 × 10⁵ 8505C and TPc1 cells; 6 × 10⁵ XCT-1 and T243 cells; and 8 × 10⁴ T241 cells) was assessed after 48 h of rapamycin treatment (range, 0.1 to 1000 nm) by the sulforhodamine B (SRB) assay. Cells were fixed with 50% (wt/vol) trichloroacetic acid and stained with a 0.1% (wt/vol) SRB solution. SRB was solubilized in a 10 mM Tris-base buffer, and the absorbance was read at 560 nm.

Western blotting

Cells were lysed in RIPA buffer supplemented with phosphatase and protease inhibitors. Proteins were resolved by SDS-PAGE and transferred onto nitrocellulose membranes (GE Healthcare, Little Chalfont, UK). The primary antibodies were referred in the immunohistochemistry section and used at a 1:1000 dilution. Anti-phospho-44/42 MAPK (pERK 1/2) (Thr202/Tyr204) (1:1000; Cell Signaling Technology) and anti-BRAF (1:500; Santa Cruz Biotechnology, Santa Cruz, CA) primary antibodies were also used.

Protein was detected using a horseradish peroxidase-conjugated secondary antibody (Santa Cruz Biotechnology) and a luminescence system (Perkin-Elmer). For protein-loading control, membranes were reprobed with an anti-α-Tubulin (Sigma-Aldrich) or an anti-actin (Santa Cruz Biotechnology) antibody. Protein expression was quantified using the Bio-Rad Quantity One 1-D Analysis software (Bio-Rad Laboratories, Inc., Hercules, CA) and normalized by the levels of actin or α-Tubulin.

Statistical analysis

Statistical analysis was done using StatView version 5.0 software (SAS Institute Inc., Cary, NC). All data are expressed as mean ± SEM. Differences between groups were examined by the unpaired Student’s t test and the Mann-Whitney U test. P values <0.05 were considered statistically significant.

Results

Overexpression of mTOR pathway proteins in malignant thyroid lesions

The proportion of immunopositive cases observed in the different histological types and the respective immunohistochemical scores are summarized in Fig. 1 and in Supplemental Tables 1 and 2 (published on The Endocrine Society’s Journals Online web site at http://jcem.endojournals.org). Information relative to the cellular localization of the staining is provided in Supplemental Table 3.

PTEN expression was observed in all malignant lesions with significantly higher staining scores than in normal thyroid (P ≤ 0.0001 to 0.0026; Fig. 1). Additionally, an increase in cytoplasmic PTEN and a decrease in the proportion of cells with nuclear PTEN were observed, particularly in cPTC (Supplemental Table 3).

A statistically significant increased expression of pAKT Ser473, relative to normal tissue, was observed in cPTC and cPTC metastases (P < 0.0001 and P = 0.0082, respectively; Fig. 1). The pAKT Thr380 protein was observed in almost all the cases of thyroid carcinoma with a significantly elevated expression when compared with normal thyroid tissue (P < 0.0001; Fig. 1).

Enhanced expression of mTOR and phosphorylated mTOR (pmTOR) Ser2448 was detected in FTC, FVPTC, and cPTC, when compared with normal thyroid tissue (P ≤ 0.0001 to 0.0022; Fig. 1). Total mTOR expression was significantly higher in cPTC, relative to the other carcinoma histotypes (P ≤ 0.0001 to 0.0022). The levels of pmTOR in cPTC were significantly higher than in FVPTC and cPTC metastases (P = 0.0108 and P = 0.0005, respectively) and were borderline higher in FTC (P = 0.0589).

Raptor and rictor were overexpressed (P ≤ 0.0001 to 0.0007; Fig. 1) in thyroid lesions in comparison to normal
tissue. In cPTC, rictor score was significantly higher than in FTC and FVPTC ($P_{/H11005} < 0.0094$ and $P_{/H11005} < 0.0023$, respectively).

A significant increase in the expression of mTORC1 downstream targets, pS6 Ser235/236 and p4EBP1 Thr37/46, relative to normal thyroid tissue, was observed only in cPTC samples ($P_{/H11005} < 0.0180$ and $P_{/H11021} < 0.0001$, respectively; Fig. 1).

In primary cPTC, we found significantly higher expression of PTEN ($P_{/H11005} < 0.0086$), pAKT Ser473 ($P_{/H11005} < 0.0477$), mTOR ($P_{/H11021} < 0.0001$), pmTOR ($P_{/H11005} < 0.0005$), and p4EBP1 Thr37/46 ($P_{/H11005} < 0.0011$) than in cPTC metastases.

These results show that, in thyroid cancer, particularly in cPTC, mTOR pathway proteins are overexpressed.

Overexpression of mTOR pathway proteins in cPTC with $BRAF^{V600E}$ mutation

Because we observed distinct expression of mTOR pathway proteins across the different histotypes, with particular overactivation in cPTC, and knowing the close genotype-phenotype correlation in thyroid tumors, we verified whether the expression of mTOR pathway proteins in cPTC was correlated with the presence of the $BRAF$ mutation. $BRAF^{V600E}$ mutation was present in 23 of the 60 (38.3%) cPTC cases.

We observed a significantly higher expression of pAKT Ser473 ($P < 0.0001$), mTOR ($P < 0.0001$), pmTOR Ser2448 ($P < 0.0001$), raptor ($P = 0.0037$), rictor ($P = 0.0323$), and pS6 Ser235/236 ($P = 0.0084$) in cPTC-$BRAF^{V600E}$ than in cPTC-$BRAF^{wt}$ (Fig. 2, A and B, and Supplemental Table 4).

These observations suggest that $BRAF^{V600E}$-mutated cPTC is associated to a higher activation of the mTOR pathway.

Regulation of mTOR pathway activation by $BRAF$

To verify the possible effects of $BRAF^{V600E}$ in the activation of the mTOR pathway, we transiently transfected HEK293 cells with control pCMV, pCMV-$BRAF^{wt}$, or pCMV-$BRAF^{V600E}$ vectors. Additionally, we down-regulated $BRAF$ by siRNA in thyroid cancer cell lines and analyzed the alterations on the levels of mTOR pathway effectors.

As observed in Fig. 3A, after transfection with pCMV-$BRAF^{wt}$ and pCMV-$BRAF^{V600E}$, an increase in the mean fold expression of mTOR (2.8 ± 0.9 and 3.3 ± 1.1, respectively), pmTOR Ser2448 (2.5 ± 0.6 and 2.2 ± 0.2, respectively), raptor (1.8 ± 0.4 and 2.1 ± 0.7, respectively), rictor (1.9 ± 0.6 and 2.4 ± 1.1, respectively), and pS6 Ser235/236 (1.9 ± 0.5 and 2.0 ± 0.3, respectively) was observed relative to pCMV-empty vector. The pCMV-$BRAF^{V600E}$ expression led to significant enhanced pmTOR Ser2448 and pS6 Ser235/236 levels ($P_{/H11005} < 0.0023$ and $P = 0.0284$, respectively; Fig. 3, A and B).

The levels of mTOR pathway effectors were evaluated in K1, 8505C, TPC1, C643, and T241 thyroid cancer cell lines after $BRAF$ down-regulation by siRNA. As observed in Fig. 4A, BRAF-C2 siRNA led to down-regulation of BRAF expression in all cell lines, although less efficiently in TPC1. Decrease of pERK1/2 was observed in all the cell lines, except in C643. In K1, such a difference was statistically significant ($P = 0.0002$). In K1, 8505C, and C643,
a significant decrease of pmTOR Ser2448 was observed upon BRAF silencing (P = 0.0039 to 0.0127; Fig. 4B), whereas this treatment led to significant reduced expression of pS6 Ser235/236 in the five cell lines (P = 0.0004 to 0.0252; Fig. 4B).

These in vitro results reveal a positive association between BRAF expression and mTOR pathway activation and support the correlation between BRAF^{V600E} and overactivation of the mTOR pathway observed in cPTC cases, particularly the overexpression of pmTOR Ser2448 and pS6 Ser235/236.

Oncogenic alterations in the ERK/MAPK pathway predict higher sensitivity of thyroid cancer cell lines to rapamycin

Basal activation of mTOR pathway was observed in the seven studied cell lines (Supplemental Fig. 1).

The sensitivity of thyroid cancer cell lines to rapamycin was compared. As observed in Fig. 5, A and B, rapamycin inhibited the growth of the seven cell lines, which was particularly evident at 10 and 100 nM concentrations (Supplemental Table 5). 8505C, K1, T243,
TPC1, and C643 showed significantly higher growth inhibition than XTC1 and T241. Altogether, at 1 to 1000 nM doses, a lower sensitivity to rapamycin was observed in cell lines without MAPK alterations, compared with the ones harboring MAPK oncogenic alterations (P < 0.0001; Fig. 5B).

In all seven cell lines, rapamycin remarkably reduced the levels of pS6 Ser235/236 (Fig. 5C), at 10 and 100 nM. Upon drug treatment, a decrease of pmTOR Ser2448 was also observed, except for the XTC-1 cell line.

These results indicate that oncogenic mutations in the MAPK pathway may confer higher sensitivity of thyroid cancer cell lines to rapamycin treatment.

BRAFV600E expression regulates the levels of pLKB1 Ser428

To assess a possible mechanism underlying the link between \(\text{BRAFV600E} \) mutation and mTOR pathway activation observed in cPTC, we evaluated the levels of pLKB1 Ser428 in HEK293 cells transfected with pCMV-empty vector, pCMV-\(\text{BRAF}^{\text{wt}} \), or pCMV-\(\text{BRAFV600E} \) as well as in thyroid cancer cell lines with BRAF knockdown by siRNA.

Increased expression of pLKB1 Ser428 was observed upon transfection with both BRAF expression vectors compared to cells transfected with the empty vector: 2.2 ± 0.8-fold for pCMV-\(\text{BRAF}^{\text{wt}} \), and 6.0 ± 1.5-fold for pCMV-\(\text{BRAFV600E} \) (Fig. 6A); the 6-fold increase of pLKB1 Ser428 expression observed in pCMV-\(\text{BRAFV600E} \) transfected cells was statistically significant (P = 0.0313; Fig. 6A).

At basal levels, pLKB1 Ser428 was barely detectable in C643 and T241. A decrease in pLKB1 Ser428 expression was observed in K1 (6.0 ± 0.06-fold), 8505C (2.3 ± 0.03-fold), and TPC1 (2.5 ± 0.2-fold) upon BRAF-C2 siRNA (Fig. 6B), which was only significant in the \(\text{BRAFV600E} \) cell lines, K1 and 8505C (P = 0.0019 and P = 0.0009, respectively). We down-regulated LKB1 in 8505C, TPC1, and K1 by siRNA. pLKB1 Ser 428 expression was confirmed to be decreased in 8505C and TPC1 (Fig. 6C), whereas it failed to be efficiently down-regulated in K1 (data not shown). In parallel, a significant up-regulation of pS6 Ser235/236 was detected in 8505C and TPC1 cell lines (P = 0.03 and 0.02, respectively; Fig. 6C).

We analyzed the expression of phospho-LKB1 in our series of primary PTC characterized for \(\text{BRAFV600E} \) mutation. We observed that \(\text{BRAFV600E} \) positive cases had higher phospho-LKB1 levels compared with \(\text{BRAF}^{\text{wt}} \) cases (mean scores, 7.1 vs. 6.4, respectively), although the difference did not reach statistical significance (\(t \) test, \(P = 0.33 \)).
Taken together, these results suggest that increased phosphorylation of pLKB1 Ser428 can be a mechanism contributing to the mTOR pathway overactivation observed in \(\text{BRAF}^{V600E}\) thyroid cancer cells.

Discussion

In the present study, we observed a particularly evident overactivation of AKT/mTOR pathway in cPTC. A significantly higher expression of mTOR pathway proteins was detected in cPTC compared with normal tissue and with the other types of differentiated thyroid carcinoma. Our immunohistochemical results fit with the previously reported increased expression of phospho-p70S6K and pAKT Ser473 in PTC tissues (29, 30). We observed a significantly higher up-regulation of the mTOR pathway in \(\text{BRAF}^{V600E}\)-mutated cPTC compared with \(\text{BRAF}^{\text{wt}}\) cPTC. As far as we are aware, this is the first time that a correlation between \(\text{BRAF}^{V600E}\) mutation and overactivation of the mTOR pathway is demonstrated in cPTC. In a previous work of our group, \(\text{BRAF}^{V600E}\)-mutated cutaneous melanomas also showed up-regulation of mTOR pathway (25), suggesting that this effect is not tumor-type specific.

Paradoxically, PTEN levels were also higher in cPTC, although with a preferential cytoplasmic localization. In fact, a decrease in PTEN nuclear localization was detected in these cases, which is in agreement with previous data showing reduced intensity of nuclear PTEN staining in PTC (16). Recent evidence showed that PTEN posttranslational regulation (e.g. ubiquitination, oxidation, or phosphorylation) can have role in cancer susceptibility by leading to inactive cytoplasmic forms and/or to deficient PTEN nuclear import (31–33).

In cPTC metastases, the levels of PTEN, pAKT Ser473, mTOR, pmTOR, and p4EBP1 were significantly lower relative to primary lesions. These results suggest that the
mTORC1 pathway might be less active in cPTC metastases than in the primary lesions. Further work and a larger cohort are needed to determine whether the discrepancy observed between primary lesions and cPTC metastases reflects true biological heterogeneity or biologically meaningless quantitative differences.

The connection observed in cPTC between BRAFV600E expression and mTOR pathway overactivation was further supported by our in vitro results: BRAF overexpression led to enhanced pmTOR and pS6 expression, whereas BRAF down-regulation led to reduced expression of these proteins of the mTOR pathway. The up-regulation of
mTOR signaling in BRAF-transformed HEK293 cells was not exclusively associated with the mutated form of BRAF, suggesting that overexpression of the wild-type BRAF protein likely mimics the situation created by the constitutional activation of BRAFV600E. Changes in mTOR pathway upon BRAF siRNA were also observed in cells harboring RAS mutation and RET/PTC. This finding, together with the reported activation of the PI3K/AKT/mTOR pathway in cells harboring those genetic alterations or RET point mutation (19–23, 34), led us to speculate that BRAF may (at least partially) modulate mTOR pathway activation in thyroid cells with genetic alterations in the MAPK pathway. In line with these observations, when we compared the sensitivity of thyroid cancer cell lines to rapamycin, a significantly higher growth inhibition was observed in thyroid cancer cell lines to rapamycin, a significantly higher growth inhibition was observed in thyroid cancer cell lines with oncogenic alterations in the MAPK pathway (BRAFV600E, RAS, and RET/PTC1).

Our results show for the first time that increased BRAF signaling leads to mTOR pathway activation and suggest that inhibition of both MAPK and mTOR pathways could be a good strategy in therapeutic targeting of BRAFV600E-positive tumors. In fact, previous data have shown an increased or synergistic activity of BRAF (RAF265) or MEK inhibitors (RDEA119, AZD6244) and mTOR inhibitors (BEZ-235, temsirolimus, or rapamycin) in the growth inhibition of thyroid cancer cell lines and xenograft tumors (35–37).

Additionally, we suggest a possible mechanism contributing to the effect of oncogenic BRAF on mTOR pathway activation. Specifically, we observed a positive correlation between BRAFV600E expression and pLKB1 levels in vitro. Moreover, LKB1 down-regulation by siRNA led to activation of the mTOR pathway, as seen by increased levels of pS6 in BRAFV600E as well as in RET/PTC-harboring thyroid cancer cell lines. As previously reported, LKB1 activity can be negatively regulated by Ser428 phosphorylation induced by the RAF-MEK-ERK signaling cascade as well as by p90-RSK (9). Therefore, it is plausible that BRAFV600E mutations and RET/PTC rearrangements, both activators of the ERK/MAPK pathway, can induce LKB1 Ser428 phosphorylation, compromising its ability to bind AMPK. In our series of human PTC, we observed a tendency for BRAFV600E-harboring cases to display increased pLKB1Ser428 levels, although it is unlikely that mutant BRAF is the only factor regulating LKB1 phosphorylation in these lesions in vivo.

Nonetheless, our results suggest that oncogenic BRAF-induced inactivation of LKB1 by Ser428 phosphorylation might underlie the mTOR pathway overactivation observed in cell lines and in human tumors harboring the BRAFV600E mutation.

These data further suggest that AMPK could be a good target in BRAF-mutated thyroid cancer, which is in accordance with a recent report showing that AICAR (AMPK activator) treatment inhibited the proliferation of BRAFV600E mutant thyroid cancer cell lines more strongly than of wild-type cell lines (38).

In PTC, BRAFV600E has been associated to a higher risk of recurrence and radioactive iodine treatment resistance, particularly due to decreased expression of Na+/I− symporter (NIS) and its impaired targeting to the membrane (39). A recent study demonstrated that rapamycin leads to an increase in NIS expression and iodine uptake in insulin- and TSH-stimulated thyroid PCCL3 cells (40). These previous data and our finding of BRAFV600E association with overactivation of mTOR pathway suggest that, in BRAFV600E cPTC cases, the up-regulation of the mTOR pathway may lead to a decrease in NIS expression, and therefore, the use of mTOR inhibitors could be a strategy to increase the radioiodine response of BRAFV600E-cPTC.

In conclusion, we demonstrated that the AKT/mTOR pathway is particularly overactivated in human cPTC harboring the BRAFV600E mutation. The association between BRAFV600E mutation and mTOR pathway activation was supported by in vitro results. BRAF-induced phosphorylation of LKB1Ser428 emerged as a possible mechanism contributing to such association, possibly through uncoupling of the LKB1-AMPK-mTOR energy stress sensor.

Our results suggest and reinforce previous observations showing that targeting the mTOR pathway (as well as in combination with MAPK pathway/AMPK inhibition) could be a good strategy to improve therapy effect in thyroid carcinomas harboring the BRAFV600E mutation.

Acknowledgments

We thank Vitor Trovisco for the BRAFwt and BRAFV600E vectors.

Address all correspondence and requests for reprints to: Paula Soares, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Cancer Biology, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal. E-mail: psoares@ipatimup.pt.

This study was supported by the Portuguese Foundation for Science and Technology (FCT) through the project grant (PTDC/SAU-OBD/69787/2006) and by Grant P509/02050-FEDER from the Ministry of Science and Innovation (Instituto de Salud Carlos III), Spain. IPATIMUP is an Associate Laboratory of the Portuguese Ministry of Science, Technology, and Higher Education that is partially supported by the FCT.

Disclosure Summary: The authors have nothing to disclose.
References

28. Jin N, Jiang T, Rosen DM, Nelkin BD, Ball DW 2009 Dual inhibi-
tion of mitogen-activated protein kinase kinase and mammalian target of rapamycin in differentiated and anaplastic thyroid cancer.
J Clin Endocrinol Metab 94:4107–4112

Members have FREE online access to current endocrine Clinical Practice Guidelines.
www.endo-society.org/guidelines