Frontal lobe epilepsy

Pedro Beleza *, João Pinho

Epilepsy Group, Department of Neurology, Braga Hospital, Largo Carlos Amarante, Apartado 2242, Braga 4701-965, Portugal

A R T I C L E I N F O

Article history:
Received 13 January 2010
Accepted 7 August 2010

Keywords:
EEG
Frontal lobe epilepsy
Refractory epilepsy
SPECT
Surgery
Treatment

A B S T R A C T

About one-quarter of patients with refractory focal epilepsies have frontal lobe epilepsy (FLE). The typical seizure semiology for FLE includes unilateral clonic, tonic asymmetric or hypermotor seizures. Interictal electroencephalograms (EEG) usually reveal interictal epileptiform discharges and rhythmic midline theta, which has localizing value. The usefulness of ictal EEG recordings is limited by frequent muscle artifacts in motor seizures and because a large portion of the frontal lobe cortex is “hidden” to scalp electrodes. Ictal single photon emission CT and positron emission tomography are able to localize FLE in about one-third of patients only. A pre-surgical evaluation should include, whenever possible, a subclassification of FLE as dorsolateral frontal, mesial frontal or basal frontal lobe epilepsy to allow a minimal cortical resection. A review of the typical findings of seizure semiology, interictal and ictal EEG regarding the different FLE subtypes is given. Etiology, medical treatment and surgery are also discussed.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Refractory epilepsy is diagnosed when there is inadequate seizure control despite use of potentially effective antiepileptic drugs (AED) at tolerable levels for 1–2 years. Once refractoriness is established, surgical treatment must be considered.1 Of all patients with refractory focal epilepsies referred to epilepsy surgery, 25% have frontal lobe epilepsy (FLE).2 The objective of resective surgery is the removal of the entire epileptogenic zone (EZ) without causing permanent neurological deficits. Given this objective, localization of the EZ is of paramount importance. This can be achieved by combining seizure semiology, interictal and ictal electroencephalogram (EEG) findings, as well as fluorodeoxyglucose (FDG)-positron emission tomography (PET), single photon emission CT (SPECT) and MRI.3

Unilateral clonic seizures,4 tonic asymmetric seizures with preserved consciousness5 and hypermotor seizures,4 while not pathognomonic, are specific for FLE. Even though abdominal auras may occur in FLE, the evolution of an abdominal aura into an automotor seizure is typical of temporal lobe epilepsy (TLE), which allows its differentiation from FLE.6 The presence of a visual aura strongly argues against an FLE, since visual auras are associated with parietal, temporal or occipital lobe epilepsy.7 Given that an ictal EEG from a patient with FLE is characterized by frequent false negatives and frequent muscle artifacts,8 the analysis of ictal semiology is crucial for the differential diagnosis between FLE and psychogenic non-epileptic seizures (PNES), the most frequent (~90%) condition misdiagnosed as epilepsy.9 Certain characteristics of the motor phenomena are strongly associated with PNES, including a very gradual onset or termination, pseudosleep, discontinuous (stop-and-go) and irregular or asynchronic (out-of-phase) activity, side-to-side head shaking, opisthotonic posturing, stuttering and weeping.10

Interictal epileptiform discharges (IED) occur in 60% to 80% of FLE and are considered to be of less localizing value than in TLE because they can be bilateral, multilobar or even generalized.11 Interictal rhythmic midline theta (RMT) is common (~50% of FLE patients) and has localizing value in patients with FLE, provided that it can be distinguished from normal variants occurring with drowsiness and mental activation tasks.12 Ictal EEG is often generalized and localized patterns are observed in fewer than one-third of patients (Fig. 1).13

Localization of seizure onset with ictal SPECT in adults is possible in only 30% to 43% of patients with FLE.14 With the use of FDG-PET, it is possible to localize a hypometabolic region in about 75% of patients with unilateral FLE and normal MRI,15 but in only 29% to 45% of patients with unilateral FLE and normal MRI.16 FLE should be, whenever possible, further classified as dorsolateral frontal, mesial frontal or basal to allow minimal cortical resection.

2. Dorsolateral frontal lobe epilepsy

Dorsolateral FLE may be further subdivided into central, premotor and prefrontal lobe epilepsy. The central lobe is sometimes described as the region formed by the primary motor cortex and the sensory cortex (Brodmann areas 4 and 3) (Fig. 2). The border be-
between these motor and sensory areas was thought to be the central sulcus, but recent studies showed both motor (tonic, clonic or motor arrest) and sensory responses after electrical stimulation of the gyrus precentralis and gyrus postcentralis. Functionally, the premotor cortex (Fig. 2) includes the secondary motor area (posterior parts of the frontal gyri), the frontal eye field (intersection of sulcus precentralis and superior frontal sulcus) and Broca’s language area (opercular and triangular parts of the inferior frontal gyrus in the dominant hemisphere). The premotor cortex projects to the primary motor cortex and, less extensively, to the motor systems of the spinal cord, and there is evidence in animal studies supporting its role in motor preparation and motor learning. Extensive frontal lobe resections up to the precentral sulcus, sparing the supplementary motor area, do not lead to any permanent or even transient motor disturbance. The prefrontal cortex (Fig. 2) is involved in emotion processing, moral behaviour, executive control, monitoring in working memory, learning and temporal structuring of behavior by context. Even though some hypotheses propose that individualized tasks are carried out by the prefrontal cortex, this brain region might be responsible for the coordination of information processing and transfer, required for occurrence of multiple high-level cognitive operations.

2.1. Seizure semiology

2.1.1. Central lobe

Although non-specific auras occur in most patients with FLE, focal somatosensory auras, more commonly unilateral parasthesias (“tingling”, “numbness” or “strange feeling” sensations) restricted to the hand, the face/tongue or the foot, are specific to contralateral
involvement of the central lobe. Likewise, unilateral myoclonic or clonic seizures, more frequently affecting distal segments of the body (such as the face or tongue), are generally also the expression of the epileptic activation of the contralateral central lobe. As for electrical stimulation of the primary motor area, it usually does not cause tonic contractions, but rather clonic twitching of the affected muscles. The pathogenesis of clonic seizures, which consists primarily of repetitive myoclonic jerks, is probably very similar to that of myoclonic seizures. Typical seizure evolution includes: (i) focal clonic seizures with Jacksonian march without secondary generalization, usually accompanied by ipsilateral head version and followed by postictal paresis; and (ii) somatosensory aura often followed by tonic posturing and head version or clonic seizures; automatisms and vocalization are rare.24

2.1.2. Premotor cortex

Typical seizure evolution associated with lesions of the premotor cortex includes early versive seizure, frequently followed by other motor manifestations such as automatisms. Versive seizures, characterized by lateral deviation of the eyes (tonic or saccadic), version of the head and, frequently, also of the trunk, especially when followed by a secondary generalized tonic–clonic seizure, indicate an epileptic activation of the frontal eye field contralateral to the side of eye deviation.25 Aphasic seizures may occur if Broca’s language area is involved. Long-lasting postictal aphasia is seen in >90% of seizures starting in the frontal lobe of the dominant side that spreads to the ipsilateral temporal lobe.24

2.1.3. Prefrontal cortex

Hypermotor seizures were defined by Lüders et al.25 as complex movements involving trunk and proximal limb segments, usually with the preservation of consciousness, and are considered specific for FLE, in close association with frontopolar and orbitofrontal cortical lesions. This type of seizure is frequently preceded by an aura (fear, ill-defined feelings, and somatosensory phenomena) and includes bizarre gestures, repetitive movements, bicycle peddling, pelvic thrusting and shouting, often charged with emotional and aggressive features. Hypermotor seizures are usually short and tend to occur during sleep. Unlike seizures involving the central lobe, the complex semiology of prefrontal seizures may be caused by disruption of neuronal synchrony between different brain regions rather than by excitation of single areas of the cortex.26

2.2. Interictal EEG

A concordant EZ and irritative zone was found in 72% of patients with dorsolateral FLE compared to 33% with mesial FLE (Fig. 3).27 Possible reasons for this difference are the smaller distance between lateral cortex and scalp electrodes and that the dipoles tangential to the scalp in mesial FLE cannot be detected by EEG. The sensitivity of interictal EEG is higher in intracranial subdural than in scalp recordings. Due to the closer distance to the cortex, subdural electrodes may reveal a smaller irritative zone in some patients, when compared to surfaces electrodes. However, a sampling bias remains in invasive monitoring studies.28

2.3. Ictal EEG

Ictal scalp EEG in 127 seizures of 15 patients with dorsolateral FLE showed correct localization of the EZ in 65% of patients, while 26% of seizures started with generalized EEG activity and 3% were mislateralized in EEG analysis.29 In this study only 1.5% of the seizures was obscured by artifacts or did not show EEG changes. The most frequent EEG patterns at seizure onset were repetitive epileptiform activity (36%), rhythmic delta (26%) and EEG suppression (14%), in contrast to rhythmic theta activity, the most frequent seizure pattern in TLE, which was seen in only 9% of the 127 seizures. A study comparing medial (n = 5) with dorsolateral (n = 4) patients with FLE found that absence of focal electrographic seizure activity excluded the possibility of dorsolateral frontal lobe seizures with a negative predictive value of 93%, but this conclusion may be misleading because of the small number of study participants.13 Several authors have reported that, although scalp electrodes showed widespread seizure onset and MRI was normal or non-localizing, the use of subdural grid electrodes that extensively covered the frontal areas was able to localize the seizure onset zone in >90% of patients.30

3. Mesial frontal epilepsy

The mesial surface of the frontal lobe includes primary sensory and motor cortex for the lower limb, the supplementary sensorimotor area (SSMA), the anterior cingulate cortex and the prefrontal cortex31 (Fig. 2). The SSMA extends anteriorly approximately to the level of the genu of the corpus callosum. SSMA stimulation results in usual bilateral and proximal tonic posturing and motor responses, but frequently show predominance on the contralateral side. Additionally, contralateral sensory phenomena may occur. The SSMA has a somatotopic distribution: the head and upper limbs are represented at the anterior and the lower limbs at the posterior surface of the interhemispheric region. Stimulation of the anterior portion of the SSMA results in arrest or slowing of voluntary motor activity. Furthermore, stimulation of the cingulate gyrus near the SSMA leads to motor responses that overlap those occurring in the SSMA, but automatisms, namely oro-alimentary, have also been described.32

3.1. Seizure semiology

A somatosensory aura consisting of “tingling” or a feeling of tension, pulling or heaviness in a limb or the impression of impending movement of the limb may precede the tonic seizure. The sensation may be relatively focal, involving a portion of a limb, lateralized with both upper and lower limbs involved simultaneously, or a poorly defined bilateral sensation in the head or body.34 The symptoms may arise from the sensory representation within the SSMA or may be the awareness of tension developing in muscle groups involved in the tonic contraction. Bilateral asymmetric tonic seizures are characterized by an abrupt onset of tonic posturing maintained for 10 s to 40s and absence of any postictal stupor or confusion.35 Penfield and Jasper described “the arm being raised and the head and eyes turned as though to look at the hand”, which is called the “fencing posture”.36 Moreover, Ajmone-Marsan and Ralston created the term “M2e” to describe tonic abduction and external rotation of the shoulder with flexion of the elbow. They described SSMA involvement if M2e posturing occurred without loss of consciousness and without progression into a secondarily generalized tonic–clonic seizure.37 Although asymmetric tonic seizure is typically associated with mesial FLE, it is not specific.38 Tonic seizures arising from the SSMA preferentially affect muscle groups on both sides of the body, yet, they more often predominate in the contralateral musculature.39 In most patients with focal epilepsy, consciousness remains unclouded during tonic seizures, at least at the onset of seizures.40 Strictly unilateral tonic seizures have a highly lateralizing significance, pointing to a contralateral seizure onset.41 Other distinct semiologies may also be associated with mesial frontal lobe onset, including: hypermotor seizures, dialeptic seizures, focal clonic seizures of the lower limb and negative myoclonus. However, hypermotor seizures do not have a highly localizing value in the frontal lobe, since orbitofrontal,42
dorsolateral frontal,11 frontopolar and opercular–insular41 seizure onset have all been reported. While seizure onset in several frontal regions may produce this seizure semiology, the anterior cingulate region has been frequently proposed as the cortical region responsible for the clinical signs and symptoms. Dialectic seizures, as defined by Lüders et al.,25 consist of episodes with loss of consciousness, during which a patient cannot react or reacts only to a limited extent to external stimuli and shows minimal motor activity. Dialectic seizures are rare in patients with FLE and were termed “frontal absences” due to their resemblance to dialectic seizures in patients with generalized epilepsies (“absence”). In contrast to childhood absences, patients with frontal lobe absences may have subtle repetitive vocalizations, rocking movements, small degrees of head and eye turning, report awareness of a motor arrest without loss of consciousness and have brief postictal confusion.41 Staring may evolve into a generalized tonic–clonic seizure via version of the head and eyes, focal tonic posturing of an upper limb or bilateral tonic posturing. Patients with dialectic seizures in FLE seem to have a more anterior EZ than those with bilateral asymmetric tonic seizures.41 This clinical semiology has been ascribed to bilateral cingulate gyrus involvement via the callosal route.42 Negative myoclonic seizure consists of short phases of muscle atonia (30–400 ms), which are preceded by epileptiform discharges in the central region (20–30 ms). Generalized and focal negative myoclonic seizures have also been reported.42 Several reports indicate that these seizures are caused by the sudden inhibition of tonic inervation of motor neurons, as evidenced by the silent electromyelogram (EMG) period. Recent studies showed that SSMA stimulation induces silent periods only, regardless of the stimulus intensity, whereas occurrence of silent periods following stimulation of the premotor cortex, primary motor cortex or primary somatosensory area depended mainly on the intensity of stimulation.44 Gelastic seizures are seizures characterized by ictal laughing, sometimes accompanied by mirth, that frequently occur in patients with hypothalamic hamartomas.45 The anteromesial superior frontal gyrus and anterior cingulate gyrus have been described as involved in motor aspects of laughter,46 while the temporal lobes, particularly the basal regions, seem to be mainly involved in the processing of mirth.47

3.2. Interictal EEG

The interictal EEG in patients with mesial FLE generally shows either abundance of non-lateralised epileptiform activity or none at all.48 Focal IED at or adjacent to the midline have been reported in patients with tonic postural seizures.35 Blume and Oliver49 found that about 50% of patients (n = 13) with “supplementary motor area epilepsy” show midline (Fz, Cz) (five patients) or frontal (F4, F3) (two patients) spike foci. EEG analysis with transverse montages and using midline electrodes Fz, Cz and Pz is essential, as maximal discharges at these electrodes may have a limited field.40 A recent study showed that all mesial FLE patients (n = 4, established by invasive EEG recordings) were characterised by interictal RMT, but this finding was less frequent in other FLE patients (44%, 22 of 50), pro-

Fig. 3. Interictal electroencephalogram (EEG) in longitudinal bipolar montage of a 16-year-old female with a right frontal epilepsy due to right inferior frontal gyrus cortical dysplasia. The EEG shows sharp waves involving right central and midline central regions.
viding evidence that RMT may be a neurophysiological marker for mesial frontal lobe abnormality.12 Nevertheless, replication of these results by further studies with a larger cohort of patients is needed. RMT is seen in patients with bilateral asymmetric tonic seizures and in patients with midline parasagittal epileptic discharges.30

3.3. Ictal EEG

Muscle activity is prominent from the onset of bilateral asymmetric tonic seizures and the EEG is frequently contaminated with considerable EMG and movement artifacts. Seizure patterns may still be evident at the vertex, where EMG activity is minimal. Absence of any ictal or immediate postictal EEG slowing has been reported in patients with mesial FLE.13 In the study by Foldvary et al., just over 50% of the seizures analyzed were obscured or showed no EEG change in the mesial frontal lobe epilepsy patients, an uncommon occurrence in the other focal epilepsy groups.29 Characteristic findings include an initial high amplitude slow wave transient or midline sharp wave, followed by bilateral frontocentral low voltage fast activity or electrodecrement.31 Accordingly, one study reported that seizures from the mesial frontal lobe more frequently showed paroxysmal fast activity (33%) or electrodecrement (29%) as the initial ictal pattern.29 Electrodecrement will usually evolve into low voltage fast activity and then bilateral frontocentral or generalized rhythmic theta slowing.52 The low voltage fast activity and the rhythmic slow activity may be either localized in the vertex or be more diffuse. Subtle lateralization of these rhythms may occur but, in general, the lateralizing information from ictal EEG is minimal. Indeed, it has been shown that only 25% of mesial FLE seizures correctly localized or lateralized on EEG and 75% had non-lateralized patterns.29 When indicated, intracranial EEG with depth electrodes, usually placed bilaterally, provides greater accuracy for lateralization and localization, but also carries a significant risk of parenchymal hemorrhage.

4. Basal frontal lobe epilepsy

On the basal (orbital) surface of the frontal lobes, five gyri can be identified: lateral orbital gyrus, anterior and posterior orbital gyri, medial orbital gyrus and gyrus rectus19 (Fig. 2). The posterior part of the orbitofrontal region is continuous with the rostral part of the orbitofrontal region, which includes the lateral orbital gyrus, anterior and posterior orbital gyri, medial orbital gyrus and gyrus rectus.41 Hypermotor seizures involving one anterior quadrant, with or without evidence of additional temporal lobe involvement.53 In a single patient with orbitofrontal epilepsy described by Chang et al., the use of invasive recordings showed that sphenoidal recordings were able to lateralize the EZ, and the infraorbital scalp electrodes added to the scalp EEG revealed that the observed bisynchronous discharges had a more basal distribution with a maximum in the infraorbital regions.55 False localization to the anterior temporal region is not uncommon in patients with basal frontal epilepsies.50 Occasionally, propagated epileptiform activity can be present over central or frontolateral regions. Moreover, epileptiform abnormalities may have a misleadingly widespread appearance because of the large distance and intervening cortical area that separates the EZ from the scalp EEG electrodes.54

4.2. Interictal and ictal EEG

Typically, abnormalities detected by scalp EEG do not allow for topographic localization of foci residing in the basal frontal lobe, mostly due to the inaccessibility of the basal frontal surface to scalp electrodes. When present, IED may have a regional distribution or appear generalized as a result of secondary bilateral synchrony. Case reports by Ludwig and co-workers highlighted the occurrence of bilaterally synchronous epileptiform discharges, with a bifrontal or frontopolar maximum, as well as discharges involving one anterior quadrant, with or without evidence of additional temporal lobe involvement.59 In a single patient with orbitofrontal epilepsy described by Chang et al., the use of invasive recordings showed that sphenoidal recordings were able to lateralize the EZ, and the infraorbital scalp electrodes added to the scalp EEG revealed that the observed bisynchronous discharges had a more basal distribution with a maximum in the infraorbital regions.55 False localization to the anterior temporal region is not uncommon in patients with basal frontal epilepsies.50 Occasionally, propagated epileptiform activity can be present over central or frontolateral regions. Moreover, epileptiform abnormalities may have a misleadingly widespread appearance because of the large distance and intervening cortical area that separates the EZ from the scalp EEG electrodes.54

5. Etiology

In a study of 68 patients with FLE who underwent frontal lobectomy between 1995 and 2003. Based on MRI and surgical pathology, patients were divided into the following etiological subgroups: (i) malformation of cortical development (MCD) with abnormal MRI (41% of patients); (ii) MCD with normal high-resolution MRI (17%); (iii) tumor (19%); (iv) vascular malformation (3%); (v) cryptogenic with normal MRI and histology (10%); and (vi) encephalomalacia following stroke or trauma (10%).58 MRI-negative MCD as a disease etiology proved to be an independent predictor of seizure recurrence after frontal lobectomy.59 Another study found that of a total of 21 patients with refractory nocturnal FLE submitted to surgery, 20 (95%) patients had focal cortical dysplasia detected on histological examination (including one patient with familial pedigree suggestive of autosomal dominant nocturnal FLE) and only 11 (52%) patients showed frontal lobe abnormalities on MRI. Invasive recording by stereo-EEG was performed in 18 (86%) patients.59 The main genetic cause of FLE is autosomal dominant nocturnal FLE (ADNFLE), a channelpathy inherited with incomplete (70%) penetrance resulting from mutations in genes coding for subunits of the nicotinic acetylcholine receptor.60 Clinically available molecular genetic testing reveals mutations in CHRN4A or CHRN8B in approximately 10% to 20% of individuals with a positive family history and in fewer than 5% of individuals with a negative family history of ADNFLE.60 Ring chromosome 20 should be suspected in patients with recurrent frontal status and normal MRI.61 Slight mental retardation or dysmorphism may also be found.62 A recent report described a patient with a ring chromosome 17 who presented with an epileptic syndrome similar to the
ring chromosome 20 syndrome, raising the question of overlap of ring chromosome epileptic syndromes.63

6. Additional and experimental methods

Despite its low spatial resolution, MR spectroscopy may help to lateralize and even to localize epileptogenic frontal and central lobe lesions by detection of reduced N-acetylaspartate levels.64 The area of decreased N-acetylaspartate concentration frequently exceeds the epileptogenic lesion as seen in MRI.65 Diffusion tensor imaging may be helpful for detection of the epileptogenic lesion in patients without structural changes on conventional MRI, especially in patients with focal cortical dysplasia.66 Furthermore, multiplanar reconstruction and curvilinear reformatting have been shown to improve the localization of focal cortical dysplasias in the frontal lobe.67

7. Treatment of refractory FLE

7.1. Surgery

The algorithm used in our institution for pre-surgical evaluation of patients with FLE is outlined in Fig. 4. A FLE patient with a lesion not adjacent to the eloquent cortex, with a congruent EEG (ictal and interictal), seizure semiology, and neuropsychology evaluation may be submitted to resective surgery without the need for invasive monitoring if: (i) ictal EEG reveals a lateralized or localized seizure pattern; or (ii) ictal EEG is normal or contains artifacts but PET or ictal SPECT is localized. Invasive monitoring is recommended when there is: FLE without a lesion; a lesion adjacent to an eloquent cortex; no congruence between the different zones; or congruence but the ictal EEG is normal and the PET and ictal SPECT are not localized.1

Extratemporal lobe surgery for focal epilepsy accounts for less than 50% of all epilepsy surgeries.68 In FLE surgery the probability of becoming seizure-free is 55.7% at 1 year, 45.1% at 3 years, and 30.1% at 5 years.69 Mesial temporal lobe epilepsy (MTLE) associated with hippocampal sclerosis is the most common form of focal epilepsy, with around 60% of patients having anterior temporal lobe resections, of whom 60–70% are seizure free at 1–2 years of follow-up69 but only 58% are seizure free at 10 years.70 Patients with FLE and favorable prognostic factors (MRI lesion restricted to one frontal lobe, complete resection, regional or lateralized ictal scalp EEG pattern) show a seizure-free outcome comparable to MTLE patients after temporal lobectomy, with 50% to 60% being seizure free at 3 years. Regarding etiology, patients with low-grade tumors have the best outcome (62%) followed by patients with MRI visible malformations of cortical development (52%).

7.2. Palliative interventions

Complete seizure control is virtually unachievable for some patients, but useful palliation can sometimes be achieved with techniques such as vagal nerve stimulation or multiple subpial transections.

Vagal nerve stimulation is indicated in adults with focal epilepsies who are not surgical candidates or who have had surgery performed without success. On average, a 50% reduction of seizure frequency has been reported in about one-third of patients, the same range of expected benefit if a new AED is added, with the advantage of lower adverse effects. However, seizure freedom is rare.71

Multiple subpial transections use radially oriented incisions in the grey matter at 4-mm intervals to limit propagation of epileptic activity within eloquent cortex and to reduce seizure spread without disturbing functional integrity. A significant seizure reduction has been reported.72

A ketogenic diet, high in fat and low in carbohydrate, is mainly used in pediatric patients (due to questions of tolerability) as a second line treatment in focal non-surgical refractory epilepsy. A recent randomized controlled trial showed a reduction of seizure frequency of more than 50% in 38% of children with drug-resistant epilepsy.73

In chronic epilepsies (more than 5 years) the addition of a previously unused AED provided seizure freedom in 17% and a 50% to 99% seizure reduction for 25%. For non-responders to the first trial, a similar benefit might be expected for at least two more trials. At the end, 28% of patients were seizure free.74 Zonisamide (100–400 mg id), levetiracetam (1000–3000 mg id), lamotrigine (300–500 mg id), topiramate (300–1000 mg id) and gabapentin (600–1800 mg id) have demonstrated efficacy (evidence level A) as add-on therapy in patients with refractory focal epilepsy.75 Even though the methodology was similar for all studies, a direct comparison between outcomes does not allow determination of the relative efficacy, because populations differed and some drugs were not used in maximum doses, whereas others appear to have been administered above the ideal dose. For essentially all drugs, efficacy as well as side effects increased with increasing doses.75 In refractory epilepsy it is convenient to manage AED by: (i) increasing the dosage up to the maximum tolerable dose; (ii) if the patient is non-responsive, then replace the AED; if the patient responds partially, then add on an AED chosen according to the mechanism of action of the first AED (e.g. lamotrigine and valproate are synergistic), efficacy and adverse effects.76

8. Conclusion

FLE is an important cause of refractory focal epilepsy and represents a substantial group of patients referred for epilepsy surgery. Seizure semiology, MRI, ictal EEG, interictal EEG and PET/SPECT should be judiciously analyzed to further classify the FLE as central, premotor, prefrontal, frontal mesial or frontal basal epilepsy. Accurate localization of the EZ and recognition of prognostic factors further contribute to the success in FLE surgery. Antiepileptic drugs, vagal nerve stimulation, a ketogenic diet and multiple subpial transections are beneficial in patients not eligible for resective surgery.

